
For full documentation, visit the AVPro Video Developer Portal

1/136

https://www.renderheads.com/content/docs/AVProVideo/

Table of Contents

 Articles
 About

 Introduction
 What's New
 Features
 Requirements
 Download
 Asset Files

 Getting Started
 Installation
 Upgrading Projects
 Quick Start
 Loading Media
 Demos
 Shaders

 Core Features
 Events
 Streaming
 AR/VR/XR
 High Res
 Stereo Video
 Transparency
 Subtitles
 Video Capture
 Content Protection
 Seeking & Playback Rate

 Ultra Features
 360 Audio
 10-bit Video
 Hap Codec
 NotchLC Codec
 Content Protection
 Caching

2/136

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

 Smooth Video
 Components

 Media Player
 Media Reference
 Apply To Material
 Apply To Mesh
 Update Multipass Stereo
 Display IMGUI
 Display UGUI
 Resolve To RenderTexture
 Audio Output
 Audio Channel Mixer
 Playlist Media Player
 Subtitles UGUI

 Extension Components
 Apply To VFX Graph
 Timeline Playables

 Platform Notes
 Windows
 Android
 macOS
 iOS/iPadOS/tvOS
 UWP
 WebGL

 Media
 Supported Media
 Encoding Notes

 Known Issues
 FAQ

3/136

javascript:void(0)
javascript:void(0)
javascript:void(0)

Introduction

AVPro Video is a powerful cross-platform video playback plugin for Unity created by RenderHeads

We created this plugin primarily for use with our internal projects. At RenderHeads we create interactive installations for events
and educational games for museums, so video playback is an important aspect of our work. We found that the built-in video
functionality in Unity didn't cater to many of the use cases we had, so since 2012 we have been building video related plugins for
Unity.

AVPro Video is the latest in a series of video playback plugins and it leverages the specific features of the different platforms it
supports, while at the same time being easy to use and highly performant.

4/136

https://www.unity3d.com
https://www.renderheads.com

What's New
What's New in AVPro Video 2.0
For a quick and easy comparison, some of the main differences compared to the previous AVPro Video 1.x plugin are summarised
in this table:

AVPRO VIDEO 2.0 AVPRO VIDEO 1.X

First released 2021 (January) 2016 (February)

New Features

Unity 2020 & 2021 support Yes No

Direct3D 12 support Yes No

NotchLC codec support on Windows Yes No

Stereo metadata video on Windows Yes No

Stereo packing detection Yes No

Unity audio playback on Android Yes No

Multi-track support Yes No

Subtitle track support Yes No

Frame-based time methods Yes No

Asset-based media (MediaReference) Yes No

Edit-mode media playback Yes No

Apple Silicon architecture support Yes No

10-bit video support Yes No

Improved Features

Low overhead macOS/iOS/tvOS plugin Yes No

Support for modern Unity features (VfxGraph, Timeline etc) Yes No

Upgraded to latest APIs (ExoPlayer, Audio 360, Hap etc) Yes No

YCbCr optimisation support on macOS Yes No

ASync Hap codec on Windows Yes No

 1

 2,

 4

 2

5/136

Adaptive streaming support Advanced Basic

Content protection support Advanced Basic

Deprecated Features

Legacy Windows XP No Yes

Legacy Windows Phone No Yes

Legacy Unity 4.x support No Yes

Legacy Unity 5.x support No Yes

Legacy Unity 2017.x support No Yes

WebGL support No Yes

PlayMaker actions included No Yes

NGUI component included No Yes

Asset Changes

New Ultra Edition for advanced users Yes No

macOS, iOS and tvOS plugins combined into a single edition Yes No

AVPRO VIDEO 2.0 AVPRO VIDEO 1.X

Why update to AVPro Video 2.0?
Modernised

Now with support for D3D12
Upgraded to using latest APIs for best modern features support, eg ExoPlayer, Hap, Facebook Audio 360
New WinRT player on Windows
Shaders and scripts upgraded to use modern Unity features

Workflow improvements
Edit-mode media playback allows media to be played without running the scene
New MediaReference asset type allows easy defining of media

Audio improvements
Android can now play audio back to Unity
Windows supports 16 channel PCM audio
Demo MediaPlayerUI includes audio spectrum visualisation

Powerfu l streaming options
New option to force adaptive stream to start at the highest bitrate on Android and Windows (using WinRT API)
New WinRT has improved streaming support
Android, macOS, iOS and tvOS expose options for specifying the preferred max bitrate and resolution

 2

 3

 2

6/136

Android exposes new options for controlling buffering behaviour

B etter integration with Unity features
Ready-to-use components for integration with the Unity features:

Timeline / Playables
Shader Graph
Visual Effect Graph

SRP / HDRP / UWP
The new texture resolver option makes it easier to integrate with other shaders / features / components

T imed Text
Subtitles support
ID3 / metadata support (planned)

Long awaited features
Stereo videos now work correctly on Windows without having to remove metadata
Frame-centric methods
Multiple video and audio track support
Textures now persist between video loads, allowing for a better visual experience and less resource reallocation (WinRT only
currently)

Improved D emos
Fewer demos, but higher quality
Focused on helping people get started with common use cases

B etter Components
MediaPlayer can now play media without having to enter Play mode, improving workflow
Many MediaPlayer UI improvements

B etter Code
The C# code has been refactored to give a cleaner and easier to work with API
Scripts are now organised using assembly definition (asmdef) files, for improved modularity, better interoperability with
modern Unity features, and reduce compile time

D ocumentation improvements
Manual and scripting documentation completely updated
Changed from PDF to HTML

Continued suppor t and development
Expect the same high level of support and longevity you’ve come to expect from other RenderHeads products
New features will continue to be added, with customer feature requests taken into high consideration
Customer support will continue to be a top priority, just as it always has been
Just as we have done before, we will continue maintaining the product through to new versions of Unity

B etter content protection options
Encrypted video via AES-128 HLS (now also supported on Windows via WinRT API)
Custom HTTP headers (now also supported on Windows via WinRT API)

P rofessional Codec Suppor t
Hap codec support on Windows now supports Media Foundation API, with faster non-blocking loading
New 10-bit NotchLC codec support on Windows
Improved support for 10-bit videos

Legacy Removal

2

2

4

7/136

Legacy support removed we can focus on the modern features
Removed support for Unity 4.x, Unity 5.x and Unity 2017.x
Windows

Removed support for legacy Windows Metro (Phone and 8.1)
Removed support for Windows XP

macOS
Minimum version changed to 10.12
Dropped OpenGL support

iOS / tvOS
Dropped 32-bit support
Dropped OpenGLES support
Minimum version changed to 11.0

 Direct3D12 support requires minimum Unity 2019.3

 Only in the Ultra Edition

 WebGL plugin still included, but we do not support it (see WebGL platform notes)

 10-bit video support has some elements that only work in the Ultra Edition and has other limitations as documented

1

2

3

4

8/136

Features
A summary of the features:

Compatibility
Unity 2018.x - 2021.x and above supported
Cross-platform with versions for iOS, tvOS, macOS, Android, Windows, UWP
Optional fallback to Unity's VideoPlayer (coming soon)
Graceful fallback for unsupported platforms

Easy to use
One API for all supported platforms
Easy to use, drag and drop components
Scriptable API

Powerful features
Playback of local files, URL files and adaptive streaming formats
VR support (mono, stereo, equirectangular and cubemap)
Transparency support (native and packed)
Linear and Gamma colour spaces supported
8K video support (on supported hardware)
Streaming bitrate controls (coming soon)

Advanced features
Encrypted video playback via AES HLS
Custom HTTP headers for secure playback
Support for industry codecs such as Hap, Hap Alpha, Hap Q and Hap Q Alpha (supporting 16K+)

Highly optimised
GPU video decoding
Optimised native Direct3D, OpenGL and Metal support
Focus on minimal garbage generation

Extensible
Components for IMGUI, Unity UI (and maybe NGUI later)
Components for Timeline/Playables, Shader Graph, Visual Effect Graph
Support for SRP (URP / HDRP)

Well supported
Free watermarked trial version available (download here)
Good documentation
Public issue tracker

9/136

https://github.com/RenderHeads/UnityPlugin-AVProVideo/releases
https://github.com/RenderHeads/UnityPlugin-AVProVideo/issues/

Requirements
System Requirements
Uni ty

2018.x, 2019.x, 2020.x, 2021.x, 2022.x

Plat forms

Apple
macOS 10.13 and above, 64bit only, Metal only
iOS 10.0 and above, 64bit only, Metal only
tvOS 11.0 and above, Metal only

Microsoft
Windows 7, 8, 8.1, 10 and above (x86 and x86_64)
Universal Windows Platform (UWP) 10 (x86 and x86_64, ARM and ARM64)
Direct3D 11 and 12

Android
Android 4.3.0 (Jelly Bean, API level 18) and above (ARM7, ARM64, x86 and x86_64)
OpenGLES2 and OpenGLES3

Platforms not Supported
Linux desktop
Lumin (Magic Leap)
TV platforms (Tizen, Samsung TV etc)
Game Consoles (XBox*, PlayStation, Switch etc)

* XBox One may be supported using the UWP build option. We have not tested this though.

VR / AR / MR / XR Headsets Supported
Android

Oculus Rift Go
Oculus Gear VR
Oculus Quest
Oculus Quest 2
HTC Vive Focus
HTC Vive Focus Plus
HTC Vive Focus 3
Gear VR
Google Cardboard
Google Daydream
Pico Goblin
Pico G2 4K
Pico Neo 2
Pico Neo 3
Lenovo Mirage Solo

Windows Desktop

HTC Vive

10/136

HTC Vive Pro
HTC Vive Cosmos
Valve Index
Oculus Rift
Oculus Rift S
StarVR

Windows UWP

Microsoft Hololens
Microsoft Hololens 2
Samsung Odyssey
Asus
HP
Acer
Lenovo Explorer
Dell Visor

11/136

Downloads, Editions & Upgrades
Free Trial Version �

1. Fully featured watermarked trial versions can be downloaded here:
https://github.com/RenderHeads/UnityPlugin-AVProVideo/releases

2. Once the .unitypackage file has been downloaded, follow the installation instructions.

Purchase
All editions of AVPro Video can be purchased via the Unity Asset Store:

Core Edition (core features for all platforms)
Core Windows Edition (core features for Windows and UWP platform)
Core Android Edition (core features for Android platform)
Core macOS/iOS/tvOS Edition (core features for Apple platforms)

Ultra Edition (advanced features for all platforms)
Enterprise Edition (for larger companies with multiple sites/offices/subsidiaries)

Editions
We've made several editions of AVPro Video available so you can pick the one that's best for your project:

TRIAL
EDITION

CORE
WINDOWS

EDITION

CORE
ANDROID
EDITION

CORE
MACOS/IOS/TVOS

EDITION
CORE

EDITION
ULTRA

EDITION
ENTERPRISE

EDITION

Platforms

Windows
standalone Watermarked Yes Watermarked Watermarked Yes Yes Yes

Windows UWP Watermarked Yes Watermarked Watermarked Yes Yes Yes

macOS standalone Watermarked Watermarked Watermarked Yes Yes Yes Yes

iOS Watermarked Watermarked Watermarked Yes Yes Yes Yes

tvOS Watermarked Watermarked Watermarked Yes Yes Yes Yes

Android Watermarked Watermarked Yes Watermarked Yes Yes Yes

Core Features

All Core features Yes Yes Yes Yes Yes Yes Yes

Android OES
Texture support No No Yes No Yes Yes Yes

12/136

https://github.com/RenderHeads/UnityPlugin-AVProVideo/releases
https://assetstore.unity.com/packages/slug/181844?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/184291?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/184293?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/184292?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/184294?aid=1101lcNgx

Ultra Features

Hap Codec Watermarked Watermarked Watermarked Watermarked Watermarked Yes Yes

NotchLC Codec Watermarked Watermarked Watermarked Watermarked Watermarked Yes Yes

Custom Http
Headers Yes No No No No Yes Yes

AES-128 HLS Yes No No No No Yes Yes

Spatial Audio Yes No No No No Yes Yes

10-bit Textures Yes No No No No Yes Yes

Caching Yes No No No No Yes Yes

Smooth Video Yes No No No No Yes Yes

Other

Support Priority Normal Normal Normal Normal Normal High Very High

Multi-site license N/A No No No No No Yes

Price Free $200 $200 $200 $400 $800 $5000

Link Download Store Store Store Store Store Contact Us

TRIAL
EDITION

CORE
WINDOWS

EDITION

CORE
ANDROID
EDITION

CORE
MACOS/IOS/TVOS

EDITION
CORE

EDITION
ULTRA

EDITION
ENTERPRISE

EDITION

 Hap Codec only supported on Windows and macOS platforms.

 NotchLC Codec only supported on Windows platform.

 Spatial Audio only supported on Windows and Android platforms.

 10-bit Textures only supported on Windows, macOS, iOS and tvOS platforms.

 Caching only supported on Android and iOS platforms.

 Experimental Feature. Only on Windows.

Upgrade Paths
In many cases a developer may own one edition and as their needs increase may need the features of other editions. To cater for
this we have set up some upgrade paths on the Unity Asset Store to make this cost effective:

Owners of AV P ro V ideo 1 .x

NOTE

1

2

3

4

5

6

1

2

3

4

5

6



13/136

https://github.com/RenderHeads/UnityPlugin-AVProVideo/releases
https://assetstore.unity.com/packages/slug/184291?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/184293?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/184292?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/181844?aid=1101lcNgx
https://assetstore.unity.com/packages/slug/184294?aid=1101lcNgx
https://www.renderheads.com/contact/

Despite AVPro Video 1.x being deprecated, existing owners of this version can still access it for download via the Unity Asset Store. Make sure
that you're logged in with the same account that you used to originally purchase it and it should be visible in your list to download the last
published version.

IMPORTANT

AVPro Video 2.x has many API changes, so upgrading a project from AVPro Video 1.x is not recommended or should be done carefully at least.
There are also feature differences between version 1.x and 2.x which are summarised in the table on the What's New page. If you do plan to
upgrade your existing project then do follow the migration guide.

There is discounted pricing automatically applied (for a limited time) for owners of the retired product AVPro Video 1.x:

Upgrade P ricing

CORE
WINDOWS

EDITION

CORE
ANDROID
EDITION

CORE
MACOS/IOS/TVOS

EDITION
CORE

EDITION
ULTRA

EDITION
ENTERPRISE

EDITION

Full Price: $200 $200 $200 $400 $800 $5000

Upgrading from another edition:

Core Windows Edition . . . $200 . .

Core Android Edition . . . $200 . .

Core macOS/iOS/tvOS Edition . . . $200 . .

Core Edition $400 $4600

Ultra Edition $4200

Upgrading from AVPro Video 1.x:

Windows Edition $100 . . $300 $700 .

Android Edition . $100 . $300 $700 .

macOS Edition . . $100 $300 $700 .

iOS Edition . . $100 $300 $700 .

tvOS Edition . . $100 $300 $700 .

Full Edition . . . $200 $600 .

Enterprise Edition $3000

Future Updates
We plan to continue supporting this product until the next major version (3.0.0). This will include bug fixes, new features and
improvements.



14/136

https://assetstore.unity.com/account/assets

Each major release will be actively supported for a minimum of 2 years, and up until the release of the next major version. We feel
that being open about our strategy for upgrades is beneficial to developers planning their projects. Owners of the current 2.x
version will get a discounted price when upgrading to 3.x

15/136

Asset Files

The AVPro Video asset package contains files organised into 5 major folders:

1. Runtime Folder
2. Extensions Folder
3. Demos Folder
4. Editor Folder
5. StreamingAssets Folder

Runtime Folder
This folder contains the primary elements of AVPro Video. It builds to the AVProVideo.Runtime assembly.

Plugins/

Contains all native plugin files

Scripts/

AssetTypes/

ScriptableObject for defining media

Components/

Monobehaviour Components

Internal/

Internal code that is not usually modified by users

Resources/Textures

Textures used by the NullMediaPlayer and always included in builds

Shaders/

This base folder contains all the optional shaders which will be stripped out if they are not used. It also contains the
important .cginc file shared by all shaders

16/136

Resources/

Internal shaders that are always included in builds

Extensions Folder
This folder contains files for supporting other packages, Unity extensions or other assets.

Timeline/

Adds support for the Playables Timeline feature

UnityUI/

Adds support for displaying video to Unity's UI system

VisualEffectGraph/

Adds support for sending video to Unity's VFX graph

Demos Folder
This folder contains several examples scenes showing how to use some of the components included with AVPro Video. This folder
builds to its own assembly and is optional.

MediaPlayerUI/

Complete scripts and shaders for a fully functional advanced UI for media playback.

SampleMedia/

MediaReference asset files for the sample media (local files and streaming URLs)

Scenes/Demo_MediaPlayer.unity

A comprehensive example scene playing back media with AVPro Video and using the MediaPlayerUI to help demonstrate
features like subtitles, seeking, Unity audio, streaming etc.

Scenes/Demo_DisplayComponents.unity

An example scene showing all of the different components used to display and manipulate videos.

Scenes/Demo_360Stereo.unity

An example scene showing 360 equirectangular stereo video applied to a sphere.

Editor Folder
This folder contains editor-only scripts which are not usually modified by users. It builds to the AVProVideo.Editor assembly.

StreamingAssets Folder
This folder contains sample media files included for demonstration purposes that the demo scenes rely on. The contained
AVProVideoSamples subfolder is optional and only used for our demo scenes.

17/136

Installation
Installation Steps
If you are installing from scratch:

1. Either download the latest trial version: https://github.com/RenderHeads/UnityPlugin-AVProVideo/releases
or
Purchase the latest version from the Unity Asset Store

2. Open your project in Unity
3. Import the unitypackage file into your Unity project by double-clicking the file
4. If prompted to upgrade some scripts click Yes

Upgrade Steps
If you are upgrading to a new version:

1. Close your Unity project
2. Open your project again and proceed to the next step immediately without running the scene or clicking on any AVPro

Video components, as this can cause the plugin files to become locked
3. Import the unitypackage file into your Unity project by double-clicking the file
4. If prompted to upgrade some scripts click Yes

Watermarked Trial Version
If you are using a trial version of the plugin then you will see a watermark displayed over the video. The watermark is in the form
of a “RenderHeads” logo that animates around the screen, or a thick horizontal bar that moves around the screen.

Installation & Watermark Troubleshooting
It’s often a good idea to check that the correct version is reported after a plugin upgrade. You can check which version you have
installed by adding an MediaPlayer component to your scene and clicking on the “About / Help” button in the Inspector for that
component. The version number is displayed in this box.

The Core and Ultra editions of AVPro Video have no watermarks for any platforms. If you use one of the platform specific Core
editions (eg AVPro Video - Core Windows Edition) then you will not see the watermark on the platform you purchased for, but
you will see the watermark on the other platforms. For example if you purchased AVPro Video - Core Android Edition then you
will still see the watermark in the Unity editor as this is running on Windows/macOS, but the videos played back when you deploy
to your Android device will be watermark-free.

Installing Multiple Single-Platform Packages
If you are not using the AVPro Video Core or Ultra package and instead have opted to purchase multiple individual Core single-
platform packages then the installation must be done carefully, especially when upgrading to a new version.

If you have installed the Core macOS/iOS/tvOS edition package then it will also contain plugins for all of the other platforms but
with the watermark enabled. This means that if you then try to install another AVPro Video package it may not override the
plugins correctly. Here is how to resolve this using the macOS/iOS/tvOS and Android package as examples:

1. Open a fresh Unity instance (this is important as otherwise Unity may have locked the plugin files which prevents them
from being upgraded)

2. Import the macOS/iOS/tvOS package
3. Import the Android package, but make sure that you have the macOS/iOS/tvOS native plugin files unticked (so that it is not

18/136

https://github.com/RenderHeads/UnityPlugin-AVProVideo/releases

overwritten) A similar process can be applied for other package combinations.

List of native plugin files that need to be selectively chosen when replacing specific platforms:

Android
Plugins/Android/AVProVideo.jar

macOS
Plugins/AVProVideo.bundle

iOS
Plugins/iOS/AVProVideo.framework

tvOS
Plugins/tvOS/AVProVideo.framework

Windows
Plugins/WSA/UWP/ARM64/AVProVideo.dll
Plugins/WSA/UWP/ARM64/AVProVideoWinRT.dll
Plugins/WSA/UWP/ARM/AVProVideo.dll
Plugins/WSA/UWP/ARM/AVProVideoWinRT.dll
Plugins/WSA/UWP/x86/AVProVideo.dll
Plugins/WSA/UWP/x86/AVProVideoWinRT.dll
Plugins/WSA/UWP/x86_64/AVProVideo.dll
Plugins/WSA/UWP/x86_64/AVProVideoWinRT.dll
Plugins/x86/AVProVideo.dll
Plugins/x86/AVProVideoWinRT.dll
Plugins/x86_64/AVProVideo.dll
Plugins/x86_64/AVProVideoWinRT.dll

19/136

Upgrading from AVPro Video 1.x
If you have existing projects based on the legacy AVPro Video 1.x product, it is possible to upgrade them to AVPro Video 2.x using
the steps below.

NOTE

It is not possible to have AVPro Video 1.x and 2.x within the same project as there would be conflicts.

Upgrading projects is not something we recommend as there have been a lot of changes between the two API versions. Before
starting this process we recommend having a backup or source control for your project.

Scenes, Prefabs and Scripts
Existing scenes and prefabs should mostly upgrade correctly, as we have created serialisation fixups for most properties. Existing
scripts will need to be manually updated to the new API using the reference below.

Upgrading
1. Close Unity and open your project up fresh (otherwise some of the plugin files will be locked if you have used the AVPro

Video scripts or plugins during your editor session, which will prevent them from being deleted)
2. The old AVPro Video package must be deleted:

1. Delete the old AVPro Video plugins folder (usually found at Assets/Plugins). When you do this you must be careful
that you don't have other files in there from other packages.

2. Delete the old AVPro Video main folder (usually found at Assets/AVProVideo)
3. Optionally delete the old sample videos folder (usually found in /Assets/StreamingAssets/AVProVideoSamples)

3. Import the latest AVPro Video 2.x package
4. Fix script compile issues in your project using the list of API changes below

API Changes
A non-exhaustive list of API changes:

LEGACY 1.X NEW 2.X NOTES

Types

class CubemapCube Removed

class DisplayBackground Removed

class DisplayBackground Removed

class DebugOverlay Removed

class UpdateStereoMaterial class UpdateMultiPassStereo

class ApplyToTextureWidgetNGUI Removed

enum MediaPlayer.FileLocation enum MediaPathType



20/136

Fields

MediaPlayer.m_VideoPath MediaPlayer.MediaPath.Path Loading Notes

MediaPlayer.m_VideoLocation MediaPlayer.MediaPath.PathType Loading Notes

MediaPlayer.m_AutoOpen MediaPlayer.AutoOpen

MediaPlayer.m_AutoStart MediaPlayer.AutoStart

MediaPlayer.m_Loop MediaPlayer.Loop

MediaPlayer.m_Volume MediaPlayer.AudioVolume

MediaPlayer.m_Balance MediaPlayer.AudioBalance

MediaPlayer.m_Muted MediaPlayer.AudioMuted

MediaPlayer.m_PlaybackRate MediaPlayer.PlaybackRate

MediaPlayer.m_Resample MediaPlayer.UseResampler

MediaPlayer.m_ResampleMode MediaPlayer.ResampleMode

MediaPlayer.m_ResampleBufferSize MediaPlayer.ResampleBufferSize

MediaPlayer.m_StereoPacking Replaced with
FallbackMediaHints

MediaPlayer.m_AlphaPacking Replaced with
FallbackMediaHints

MediaPlayer.m_DisplayDebugStereoColorTint Removed

MediaPlayer.m_FilterMode MediaPlayer.TextureFilterMode

MediaPlayer.m_WrapMode MediaPlayer.TextureWrapMode

MediaPlayer.m_AnisoLevel MediaPlayer.TextureAnisoLevel

MediaPlayer.m_LoadSubtitles MediaPlayer.SideloadSubtitles

DisplayUGUI._mediaPlayer DisplayUGUI.CurrentMediaPlayer

DisplayIMGUI._mediaPlayer DisplayIMGUI.Player

DisplayIMGUI._color DisplayIMGUI.Color

Methods

LEGACY 1.X NEW 2.X NOTES

21/136

MediaPlayer.OpenVideoFromFile() MediaPlayer.OpenMedia()

MediaPlayer.CloseVideo() MediaPlayer.CloseMedia()

MediaPlayer.OpenVideoFromBuffer() MediaPlayer.OpenMediaFromBuffer()

MediaPlayer.StartOpenChunkedVideoFromBuffer() MediaPlayer.StartOpenChunkedMediaFromBuffer()

IMediaInfo.GetDurationMs() IMediaInfo.GetDuration() Time format changes

IMediaInfo.GetAudioTrackCount() IAudioTracks.GetAudioTracks().Count Tracks

IMediaControl.GetCurrentTimeMs() IMediaControl.GetCurrentTime() Time format changes

IMediaControl.GetBufferingProgress() No replacement

IMediaControl.GetBufferedTimeRange() Time Ranges

IMediaControl.GetBufferedTimeRangeCount() IMediaControl.GetBufferedTimes().Count Time Ranges

IMedaControl.SetAudioTrack() IAudioTracks.SetActiveAudioTrack() Tracks

LEGACY 1.X NEW 2.X NOTES

Time
All time values have changed from 32-bit float milliseconds, to 64-bit double seconds.

Tracks
 int trackCount = mediaPlayer.AudioTracks.GetAudioTracks().Count;
 AudioTrack track = mediaPlayer.AudioTracks.GetAudioTracks()[index];
 mediaPlayer.AudioTracks.SetActiveAudioTrack(track);

Media Hints
 MediaHints hints = mediaPlayer.FallbackMediaHints;
 hints.stereoPacking = StereoPacking.None;
 mediaPlayer.FallbackMediaHints = hints;

Time Ranges
 int bufferZones = IMediaControl.GetBufferedTimes().Count
 TimeRange range = IMediaControl.GetBufferedTimes()[0];

PlayMaker
PlayMaker actions from AVPro Video 1.x are not included in 2.x

Other Changes

22/136

Without going into detail, other API changes include:

1. Custom HTTP headers
2. Setting audio output mode
3. macOS, iOS and tvOS have been unified, so most mentions of 'MacOSX' have been replaced with 'Apple'

23/136

Quick Start
Playing Media
A MediaPlayer component is always required and so should be the first component you add to your scene.

1. Create a GameObject with the MediaPlayer component by selecting from the menu
GameObject > Video > AVPro Video - MediaPlayer .

2. On the MediaPlayer component, set the media source via the Settings > Source section. Press on the folder button to
browse for the media you want to play. See the Loading Media section for more information about this.

The MediaPlayer is set up to load and play your video, however it will not display yet (see below).

Displaying Video on the UI
The DisplayUGUI component is used to render the video to the UI.

1. Create your UI canvas by going to the menu GameObject > UI > Canvas .
2. Make sure the new Canvas GameObject is selected and then select from the menu GameObject > UI > AVPro Video uGUI

to add the DisplayUGUI component.
3. Select the new GameObject and assign the MediaPlayer property to the MediaPlayer created above.
4. Play the scene to see your media displayed

Displaying Video on a Mesh
The ApplyToMesh component is used to render the video to a mesh.

1. Add a 3D mesh object to your scene (eg Quad) and move it so that it is visible by the main camera.
24/136

2. Add the ApplyToMesh components to a GameObject and assign the Media property to the MediaPlayer created above and
the Renderer property to the MeshRenderer component.

3. Create a new material and assign it a suitable AVPro Video shader (eg AVProVideo/Unlit/Opaque).
4. In the MeshRenderer assign this new material to the Materials Element 0 property.
5. Play the scene to see your media displayed on a mesh.

Demo Scenes
Read about the included demo scenes as these are also a good quick start reference for typical use-cases.

25/136

Loading Media
The location of media can be specified in two main ways:

1. Media Reference
2. Path

Media Reference

The MediaReference asset allows media to be specified and stored within Unity, media hints to be set (eg transparency and
stereo) and referenced easily. This is the preferred way to specify media if the media is permanent.

Path

Alternatively a file path / URL can be specified directly in the MediaPlayer. This is suitable for media that isn't permanent and
therefore isn't worth creating a MediaReference for. With this method the media hints need to be specified in the MediaPlayer.

Scripting
// Opening media via a MediaReference
MediaReference mediaReference = _myMediaReference;
bool isOpening = mediaPlayer.OpenMedia(mediaReference, autoPlay:true);

// Opening media URL via a Path
bool isOpening = mediaPlayer.OpenMedia(new MediaPath("https://www.myvideos.com/stream.m3u8",
MediaPathType.AbsolutePathOrURL), autoPlay:true);

// Opening local file media via a Path
bool isOpening = mediaPlayer.OpenMedia(new MediaPath("myvideo.mp4",
MediaPathType.RelativeToStreamingAssetsFolder), autoPlay:true);

// Changing the media hints for content loaded via Path
MediaHints hints = mediaPlayer.FallbackMediaHints;
hints.stereoPacking = StereoPacking.TopBottom;
mediaPlayer.FallbackMediaHints = hints;

Android
On Android keeping very large video files in the StreamingAssets folder is not a good idea because this folder is converted into
a JAR file and uses a lot of memory to open. In these cases it's best to store the videos in Application.persistentDataPath (

26/136

MediaPathType.RelativeToPersistentDataFolder), usually by downloading it to this folder. You may also need to set the
permissions to access this folder which is in Player Settings > Android > Write Permission > External (SDCard) .

27/136

https://stackoverflow.com/questions/30189145/download-and-save-image-into-application-persistentdatapath-hangs-the-app

Demos
Media Player UI Demo

A comprehensive example scene playing back media with AVPro Video and using the MediaPlayerUI to help demonstrate features
like subtitles, seeking, Unity audio, streaming etc.

Display Components Demo

28/136

An example scene showing all of the different components used to display and manipulate videos (eg ApplyToMesh, DisplayUGUI
etc). It also shows how to apply the video to a Skybox .

360 Stereo Demo

An example scene showing 360 equi-rectangular stereo video applied to a sphere. If no VR headset is available touch/mouse can

29/136

be used to rotate the camera view.

30/136

Shaders

AVPro Video includes a number of shaders, most of which are used internally, but in some cases the user is required to use the
appropriate shader.

Canvas Display
When displaying video on the Canvas via the DisplayUGUI component you don't have to worry about the shader being used.
Internally this component will select the best AVPro Video shader to use.

Mesh Display
When using the ApplyToMesh or ApplyToMaterial component, you should make sure that the material uses one of the AVPro
Video shaders. This is because the textures produced by the plugin need transforming to be displayed correctly (eg gamma
adjustments, stereo resolving, alpha packing, vertical flipping on some platforms etc). Our shaders handle all of this automatically
and without an extra resolve step which would add overhead.

NOTE

In the near future we plan to add a "Resolve" feature which will resolve the textures to a RenderTexture so that our shaders won't be required.
This will be very useful for many cases, but it will be a small performance penalty due to the extra resolve step.

Unlit Shaders

For cases where lighting isn't needed:

Unlit
Supports: Stereo, colour tint, fog
Unsupported: Lighting, transparency

Unlit-Transparent
Supports: Stereo, colour tint, fog, transparency
Unsupported: Lighting

Unlit-AndroidOES
Android OES mode only (it will fall back to the Unlit shader on non-Android platforms)
Supports: Stereo, colour tint
Unsupported: Lighting, transparency

Unlit-Transparent-AndroidOES



31/136

Android OES mode only (it will fall back to the Unlit transparent shader on non-Android platforms)
Supports: Stereo, colour tint
Unsupported: Lighting

Unlit V R Shaders

Very similar to the previous Unlit shaders, but with some extra functionality often used for 360 / 180 VR videos, and culling
reversed to make the mesh (usually a sphere) visible from inside:

VR-InsideSphere
Supports: Stereo, fog, Equi-rectangular 360 and 180 video layout
Unsupported: Lighting, transparency

VR-InsideSphere-Transparent
Supports: Stereo, fog, Equi-rectangular 360 and 180 video layout, transparency
Unsupported: Lighting

VR-InsideSphere-StereoUV
This is a special case, it's the same as VR-InsideSphere but uses a different texture coordinate set per eye. This is useful
fo custom layouts specified via UV coordinates
Supports: Stereo, fog, custom video layouts
Unsupported: Lighting, transparency

VR-InsideSphere-AndroidOES
Android OES mode only (it will fall back to the VR-InsideSphere shader on non-Android platforms)
Supports: Stereo, fog, Equi-rectangular 360 and 180 video layout
Unsupported: Lighting, transparency

VR-InsideSphere-Transparent-AndroidOES
Android OES mode only (it will fall back to the VR-InsideSphere shader on non-Android platforms)
Supports: Stereo, fog, Equi-rectangular 360 and 180 video layout, transparency
Unsupported: Lighting

Skybox Shaders

For cases where the video is to be applied to a Skybox:

Skybox-Sphere
Supports: Stereo, Equi-rectangular 360 video layout

Skybox-Cube3x2
Supports: Stereo, Cubemap 3x2 video layout

Lit Shaders

For cases where the video needs to be lit by the scene:

Lit-Diffuse
Supports: Lighting, stereo, Colour tint
Unsupported: Transparency, fog

Lit-Transparent-Diffuse
Supports: Lighting, transparency
Unsupported: Stereo, fog

NOTE

Materials using these lit shaders will not automatically update when upgrading to HDRP / UWP rendering pipelines.



32/136

33/136

Events
The MediaPlayer component generates various events which can be subscribed to.

Events Section

The Events section of the MediaPlayer component can be usd to assign a method for handling events, however it is usually
better to do this via scripting (see below).

Events can also be filtered via the dropdown Triggered Events list to prevent certain events from triggering which can save
some scripting performance.

Scripting
Here is an example of how to add a listener for events and handle those events:

using UnityEngine;
using RenderHeads.Media.AVProVideo;

[RequireComponent(typeof(MediaPlayer))]
public class EventsExample : MonoBehaviour
{
 void Awake()
 {
 // The method HandleEvent will be called whenever an event is triggered
 GetComponent<MediaPlayer>().Events.AddListener(HandleEvent);
 }

 // This method is called whenever there is an event from the MediaPlayer
 void HandleEvent(MediaPlayer mp, MediaPlayerEvent.EventType eventType, ErrorCode code)
 {
 Debug.Log("MediaPlayer " + mp.name + " generated event: " + eventType.ToString());
 if (eventType == MediaPlayerEvent.EventType.Error)
 {
 Debug.LogError("Error: " + code);
 }
 }
}

Events
EVENT DESCRIPTION

MetaDataReady Triggered when certain data (width, duration etc) is available

ReadyToPlay Triggered when the video is loaded and ready to play (not triggered when auto-play is enabled)

34/136

Started Triggered when the playback starts

FirstFrameReady Triggered when the first frame has been rendered (not available on some playforms e.g. WebGL)

FinishedPlaying Triggered when a non-looping video has finished playing

Closing Triggered when the media is closed

Error Triggered when an error occurs

SubtitleChange Triggered when the subtitles change

Stalled Triggered when media is stalled (e.g. when lost connection to media stream)

Unstalled Triggered when media is resumed form a stalled state (e.g. when lost connection is re-established)

ResolutionChanged Triggered when the resolution of the video has changed (including the load). Useful for adaptive streams

StartedSeeking Triggered when seeking begins

FinishedSeeking Triggered when seeking has finished

StartedBuffering Triggered when buffering begins

FinishedBuffering Triggered when buffering has finished

PropertiesChanged Triggered when any properties (e.g. stereo packing are changed) - this has to be triggered manually

PlaylistItemChanged Triggered when the new item is played in the playlist

PlaylistFinished Triggered when the playlist reaches the end

TextTracksChanged Triggered when the text tracks are added or removed

TextCueChanged Triggered when the text to display changes

EVENT DESCRIPTION

35/136

Streaming
AVPro Video supports several streaming protocol depending on the platform:

WINDOWS UWP ANDROID MACOS IOS / IPADOS / TVOS

HTTP Progressive

MP4 � � � � �

Adaptive

HLS (m3u8) � � � � �

MPEG-DASH (mpd) � � � . .

Microsoft Smooth Streaming (ism) � � . . .

Real-time

RTSP ~ . � . .

RTMP ~ . � . .

 Requires Windows 10 for native support, or using DirectShow with suitable 3rd party filter (eg LAV Filters).

 Limited native support. Read Microsoft notes about support here: https://docs.microsoft.com/en-
us/windows/win32/medfound/supported-protocols. Generally only support ASF, MP3 and PCM media types, but support seems
improved from Windows 10 build 1803 onwards (as in added H.264 support), but it's not documented (parsing is handled by
mfnetsrc.dll).

 Only using DirectShow with suitable 3rd party filter (eg LAV Filters).

 Using ExoPlayer API only.

 Using ExoPlayer API, or MediaPlayer API (but not fully featured).

 Using ExoPlayer API only. Known issues surrounding address resolution.

HTTP Progressive Streaming
This form of streaming is probably the most widely supported. It is very similar to playing a local MP4 file, except that it is
streamed from a network source. The HTTP server should support features such as byte range requests.

When encoding MP4 videos for streaming make sure they are encoded with the video header data at the beginning of the file.
You normally do this by selecting “Fast Start” in QuickTime encoder, or use the “-movflags faststart” option in FFMPEG, Other
encoders will have a similar option. To prepare an MP4 for streaming using FFMPEG you can use the following command:

 ffmpeg -i %1 -acodec copy -vcodec copy -movflags faststart %1-streaming.mp4

Adaptive Streaming

1 1

1 1 4

1 1

2 5

3 6

1

2

3

4

5

6

36/136

https://docs.microsoft.com/en-us/windows/win32/medfound/supported-protocols
https://github.com/ant-media/LibRtmp-Client-for-Android/issues/65

Adaptive streaming such as HLS and MPEG-DASH are flexibly formats that support adaptive bit-rate selection and multiple audio,
video and subtitle tracks. HLS is by far the most widely supported.

On certain platforms (Android and Windows 10) we allow setting a hint so that streaming will begin with the highest bit-rate. On
Apple platforms the player adheres to Apple's standard of starting with the first stream in the manifest file.

AES-128 encrypted HLS streams, and custom HTTP headers are supported in the Ultra Edition.

Real-time Streaming
Formats like RTSP/RTMP are designed for real-time streaming and are popular with live streaming cameras. As shown in the
above table AVPro Video doesn't have strong support for these formats as they are not the focus of this plugin and most
operating systems do not have good native support for them.

Live Streaming
Live HLS and MPEG-DASH streams are supported and will return a duration of +infinity.

// Detect a live stream
double duration = mediaPlayer.Info.GetDuration();
bool isLive = double.IsInfinity(duration);

Some live streams contain a seekable range so that the stream can be viewed from an offset from the live time. The seekable
range should be queried to determine this.

// Get the seekable time range
TimeRanges seekable = mediaPlayer.Control.GetSeekableTimes();
Debug.Log("Seekable time: " + seekable.MinTime + " " + seekable.MaxTime);

Some HLS streams contain a program-time via the EXT-X-PROGRAM-DATE-TIME tag. This is supported on macOS, iOS, tvOS,
Android (using ExoPlayer) and Windows 10 (using WinRT API). This can be queried in script:

// Get the stream date and time
System.DateTime time = mediaPlayer.Control.GetProgramDateTime();
if (time != DateTime.MinValue)
{
 Debug.Log("Valid time: " + time.toString());
}

Windows
For best results with adaptive streams, select the WinRT video API (requires Windows 10) instead of the default Media
Foundation. This will give better streaming performance and compatibility, especially for live streams. This will also allow you to
select the option to begin streaming at the highest bit-rate available via the Platform Specific > Windows options.

// Start adaptive stream using the highest resolution - WinRT only
mediaPlayer.PlatformOptionsWindows.videoApi = Windows.VideoApi.WinRT;
mediaPlayer.PlatformOptionsWindows.startWithHighestBitrate = true;

// Set live stream to use the lowest latency possible for live streams - WinRT only
mediaPlayer.PlatformOptionsWindows.videoApi = Windows.VideoApi.WinRT;
mediaPlayer.PlatformOptionsWindows.useLowLiveLatency = true;

Android
Using the ExoPlayer API is recommended for streaming video as it generally has wider support for streaming protocols.

37/136

Android streaming requires the Internet Access setting (in Player Settings) to be set to “Require” :

ExoPlayer will also allow you to select the option to begin streaming at the highest bit-rate available via the
Platform Specific > Android options.

// Start adaptive stream using the highest resolution - ExoPlayer only
mediaPlayer.PlatformOptionsAndroid.videoApi = Android.VideoApi.ExoPlayer;
mediaPlayer.PlatformOptionsAndroid.startWithHighestBitrate = true;

// Set the maximum adaptive resolution to 1080p - ExoPlayer only
mediaPlayer.PlatformOptionsAndroid.videoApi = Android.VideoApi.ExoPlayer;
mediaPlayer.PlatformOptionsAndroid.preferredMaximumResolution = OptionsAndroid.Resolution._1080p;

// Set the peak adaptive bitrate to 4Mbps - ExoPlayer only
mediaPlayer.PlatformOptionsAndroid.videoApi = Android.VideoApi.ExoPlayer;
mediaPlayer.PlatformOptionsAndroid.preferredPeakBitRate = 4.0f;
mediaPlayer.PlatformOptionsAndroid.preferredPeakBitRateUnits = OptionsAndroid.BitRateUnits.Mbps;

ExoPlayer exposes buffering values via the Platform Specific > Android options.

// Adjust buffering - ExoPlayer only
mediaPlayer.PlatformOptionsAndroid.videoApi = Android.VideoApi.ExoPlayer;
// Set a buffer size of 50 seconds
mediaPlayer.PlatformOptionsAndroid.minBufferMs = 50000;
mediaPlayer.PlatformOptionsAndroid.maxBufferMs = 50000;
// Wait for 2.5 seconds of media to become buffered before playback begins or resumes after a seek
mediaPlayer.PlatformOptionsAndroid.bufferForPlaybackMs = 2500;
// Wait for 5.0 seconds of media to become buffered before playback starts after the buffer runs out due to
bandwidth/connection issues
mediaPlayer.PlatformOptionsAndroid.bufferForPlaybackAfterRebufferMs = 5000;

NOTE

Starting with Android 9 (API level 28) cleartext support (unencrypted HTTP connections) is disabled by default, which can cause some HTTP
streams to fail. You should be able to resolve this by switching the URL to HTTPS or by adding android:usesCleartextTraffic="true"
into your AndroidManifest.xml file.

macOS / iOS / tvOS
This platform supports streaming of HLS streams which typically end with the m3u or m3u8 extension.

NOTE

HTTP URLs are no longer supported by default on these platforms, and a secure HTTPS URL should be used.

If you can only use HTTP then your app has to have a special flag set to let it use HTTP connections (this is a security issue for
Apple). This setting is exposed in the Unity Player Settings here for iOS and tvOS:





38/136

The setting is also exposed in the Unity scripting API here: http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-
allowHTTPDownload.html

If for some reason your version of Unity doesn’t expose this then you will have to add it manually. In the Unity editor you need to
edit "Unity.app/Contents/Info.plist" and in your built application you would need to edit "your.app/Contents/Info.plist". These files
need to have these keys added:

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>

HLS options are exposed via the Platform Specific options.

// Set maximum HLS resolution to 1080p and peak bitrate to 4Mbps - macOS
mediaPlayer.PlatformOptionsMacOSX.preferredMaximumResolution = OptionsApple.Resolution._1080p;
mediaPlayer.PlatformOptionsMacOSX.preferredPeakBitRate = 4.0f;
mediaPlayer.PlatformOptionsMacOSX.preferredPeakBitRateUnits = OptionsApple.BitRateUnits.Mbps;

// Set maximum HLS resolution to 1080p and peak bitrate to 4Mbps - iOS
mediaPlayer.PlatformOptionsIOS.preferredMaximumResolution = OptionsApple.Resolution._1080p;
mediaPlayer.PlatformOptionsIOS.preferredPeakBitRate = 4.0f;
mediaPlayer.PlatformOptionsIOS.preferredPeakBitRateUnits = OptionsApple.BitRateUnits.Mbps;

// Set maximum HLS resolution to 1080p and peak bitrate to 4Mbps - tvOS
mediaPlayer.PlatformOptionsTVOS.preferredMaximumResolution = OptionsApple.Resolution._1080p;
mediaPlayer.PlatformOptionsTVOS.preferredPeakBitRate = 4.0f;
mediaPlayer.PlatformOptionsTVOS.preferredPeakBitRateUnits = OptionsApple.BitRateUnits.Mbps;

UWP / Hololens
Make sure to tick the “InternetClient” capabilities option in Player Settings.

If you’re streaming video from a local server / LAN then you need to enable the “PrivateNetworkClientServer” option.

For best results with adaptive streams, select the WinRT video API (requires Windows 10) instead of the default Media
Foundation. This will give better streaming performance and compatibility, especially for live streams. This will also allow you to
select the option to begin streaming at the highest bit-rate available via the Platform Specific > Windows options

// Start adaptive stream using the highest resolution - WinRT only
mediaPlayer.PlatformOptionsWindowsUWP.videoApi = WindowsUWP.VideoApi.WinRT;
mediaPlayer.PlatformOptionsWindowsUWP.startWithHighestBitrate = true;

// Set live stream to use the lowest latency possible for live streams - WinRT only
mediaPlayer.PlatformOptionsWindowsUWP.videoApi = WindowsUWP.VideoApi.WinRT;
mediaPlayer.PlatformOptionsWindowsUWP.useLowLiveLatency = true;

WebGL
IMPORTANT

We do not officially support WebGL, but only include it as it may be useful for some people. We found too many issues with browser



39/136

http://docs.unity3d.com/ScriptReference/PlayerSettings.iOS-allowHTTPDownload.html

compatibility to continue supporting it

If you are trying to access a URL on another server/port/domain then you need to have CORS (cross-origin resource sharing)
configured on that server to allow access. Websites like https://enable-cors.org/ show you how to configure CORS on different
web servers. If you are hosting on a S3 bucket there are also ways to configure this. You can also test whether CORS is the issue
by installing a browser plugin to toggle CORS, for example this one for Chrome:
https://chrome.google.com/webstore/detail/allow-cors-access-control/lhobafahddgcelffkeicbaginigeejlf?hl=en

Be tte r HLS/MPEG-DASH Suppor t

HLS and MPEG-DASH are not natively supported by all browsers. We have added hooks to include third-party javascript libraries
to handle these formats. Under the “Platform Specific > WebGL” section you can select “External Library” . This will force
the MediaPlayer to use either hls.js or dash.js. You can also select “custom” if you wish to add support for your own javascript
library.

// Set the external library to hls.js
mediaPlayer.PlatformOptionsWebGL.externalLibrary = WebGL.ExternalLibrary.HlsJs;

To add suppor t or dash. j s :

1. Download the latest dash.js release (we last tested with 2.8.0): https://github.com/Dash-Industry-Forum/dash.js/releases
2. Copy “dash.all.min.js” to the Assets/Plugins/WebGL folder and rename it “dash.all.min.jspre” (don’t rename it inside the

Unity editor as it will not get the correct extension, instead rename it from Explorer or Finder)
3. In the MediaPlayer component set Platform Specific > WebGL > External Library to dash.js
4. Build for WebGL

To add suppor t for hl s. j s :

1. In the MediaPlayer component set Platform Specific > WebGL > External Library to hls.js
2. Build for WebGL

3. Download the latest hls.js release (we last tested with v1.0.7):

https://github.com/video-dev/hls.js/releases

4. Once your build is made, copy “hls.min.js” to the TemplateData folder

5. Edit the index.html to add <script src="TemplateData/hls.min.js"></script> in a <head>; section of the HTML, before the
UnityLoader.js script is loaded. Ideally you would add this to a new WebGL template so that you don’t have to make these
changes for each build.

6. If you want to pass in custom config options (see hls.js reference), then you will need to edit AVProVideo.jslib and change
the HLS constructor to pass in your config options, eg:

YouTube / Facebook Live / Twitch Support
We get asked a lot about YouTube/Twitch etc support, so we are including this note here. AVPro Video doesn't officially support
streaming from such platforms. This is because it is against their terms & conditions, and the streaming URLs are protected by
javascript and server obfuscation. We have heard though that some people are using 3rd party tools to extract the streaming
URLs. In theory these URLs could be playable in AVPro Video but this is not something we support.

Vimeo Support
If you are streaming videos from VIMEO as MP4 then you should note that you can replace the “.mp4” part in the URL with
“.m3u8” to instead make it an HLS stream. This may be particularly useful if you are developing apps for the Apple’s App Store as
you would need to use HLS streaming to pass certification (as for April 2016).

There is also an official Unity plugin for Vimeo (by Vimeo) that integrates with the old version of AVPro Video. Unfortunately
Vimeo have not maintained their plugin so we can no longer recommend it.

40/136

https://enable-cors.org/
https://chrome.google.com/webstore/detail/allow-cors-access-control/lhobafahddgcelffkeicbaginigeejlf?hl=en
https://github.com/video-dev/hls.js/
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js/releases
https://github.com/video-dev/hls.js/releases
https://github.com/video-dev/hls.js/blob/master/docs/API.md#fine-tuning

Dropbox / Google Drive / One Drive Support
These services aren't designed for streaming video files, so files hosted here will not work with AVPro Video.

AWS S3 Support
AVPro Video supports streaming video files from AWS S3.

Test Streams
We found these 3rd-party streams handy for testing (but no guarantee that they’re still working):

"Tears of Steel" VOD
https://stream.mux.com/4XYzhPXzqArkFI8d1vDsScBLD69Gh1b2.m3u8
HTTPS - HLS - H.264 - AAC - WebVTT Subtitles - 1080p

"Tears of Steel" LIVE
https://cph-p2p-msl.akamaized.net/hls/live/2000341/test/master.m3u8
HTTPS - HLS - H.264 - AAC - 1080p

"Apple Bip Bop" VOD
https://devstreaming-cdn.apple.com/videos/streaming/examples/bipbop_16x9/bipbop_16x9_variant.m3u8
HTTPS - HLS - H.264 - AAC - WebVTT Subtitles - 1080p

"Skate Phantom" VOD
http://sample.vodobox.net/skate_phantom_flex_4k/skate_phantom_flex_4k.m3u8
HTTP - HLS - H.264 - AAC - 4K

"Llama Drama" VOD
http://amssamples.streaming.mediaservices.windows.net/634cd01c-6822-4630-8444-
8dd6279f94c6/CaminandesLlamaDrama4K.ism/manifest(format=m3u8-aapl)
HTTP - HLS - H.264 - AAC - 4K

41/136

https://stream.mux.com/4XYzhPXzqArkFI8d1vDsScBLD69Gh1b2.m3u8
https://cph-p2p-msl.akamaized.net/hls/live/2000341/test/master.m3u8
https://devstreaming-cdn.apple.com/videos/streaming/examples/bipbop_16x9/bipbop_16x9_variant.m3u8
http://sample.vodobox.net/skate_phantom_flex_4k/skate_phantom_flex_4k.m3u8
http://amssamples.streaming.mediaservices.windows.net/634cd01c-6822-4630-8444-8dd6279f94c6/CaminandesLlamaDrama4K.ism/manifest%2528format=m3u8-aapl%2529

Augmented / Mixed / Virtual Reality
AVPro Video has a number of features useful for XR experiences.

360 and 180 Formats
Three popular spatial mapping formats are supported:

Equirectangular 360
Equirectanuglar 180
Cubemap 3:2 (also known as Facebook Cubemap)

These layouts can be set as a hint on the MediaPlayer via the Inspector, or via scripting:

// Set the video layout mapping hint on the MediaPlayer
mediaPlayer.VideoLayoutMapping = VideoMapping.EquiRectangular180;

Displaying
Equirectangular videos can be played on a sphere, or assigned to a Skybox material.

The ApplyToMesh component can be used to render a video to a sphere with the user camera at the center of the sphere. See the
360 Sphere Demo for an example of this.

Or a Skybox component with ApplyToMaterial component can be used to render a video to the skybox. See the Display
Components Demo for an example of this.

High Resolution Video
360 / 180 VR videos typically require high resolutions. See the High Resolution Video section.

3D Stereo Video
See the 3D Stereo Video section.

180 Video
180 video works similarly to 360 video, but with some differences:

Make sure to set the spatial mapping format to Equirectangular 180 either in the Visual section of the MediaPlayer
component in the Inspector, or via scripting.
If the 180 video displayed (eg using ApplyToMesh component) on a sphere then it will be mirrored front and back. Instead a
material with the AVProVideo/VR/InsideSphere Unlit Transparent(stereo+color+fog+alpha) shader can be applied to
the sphere and this will only render the video to the front half of the sphere, and feather the edges to transparency. The
amount of feathering can be controlled in the material using the Edge Feather property.

Spatial Audio
See the 360 Audio section.

VR / AR / MR / XR Headsets Supported
Android

42/136

Oculus Rift Go
Oculus Gear VR
Oculus Quest
Oculus Quest 2
HTC Vive Focus
HTC Vive Focus Plus
HTC Vive Focus 3
Gear VR
Google Cardboard
Google Daydream
Pico Goblin
Pico G2 4K
Pico Neo 2
Pico Neo 3
Lenovo Mirage Solo

Windows Desktop

HTC Vive
HTC Vive Pro
HTC Vive Cosmos
Valve Index
Oculus Rift
Oculus Rift S
StarVR

Windows UWP

Microsoft Hololens
Microsoft Hololens 2
Samsung Odyssey
Asus
HP
Acer
Lenovo Explorer
Dell Visor

43/136

High Resolution Video
The video resolution that can be played is only limited by the video decoder capabilities of the hardware. Most modern systems
can decode at least 4K H.264 or HEVC(H.265) in hardware. Some systems (especially mobile / untethered) have some custom
encoding requirements for higher resolutions and the developer documentation should be researched.

NOTE

In general support for H.264 above 4K resolution is not universally common. For resolutions above 4K the HEVC (H.265) codec should be used
unless targeting a specific platform with other capabilities.

WARNING

Hardware has a limit to how much video they can decode simultaneously. It may be able to load 4 1080p videos and decode them, but only 1
4K video. This is especially true on mobile / portable VR platforms. If you use up all the capabilities of the hardware video decoder, then a second
video will often not be loadable until you have unloaded the first video.

Windows
On Windows 8K video decoding usually requires a high-end GPUs (NVidia Geforce 10xx series and above, or newer Intel
integrated GPUs) with 64-bit builds, using the HEVC codec.

For very high resolutions (eg 16K and beyond), a flexible codec like Hap or NotchLC can be used.

Android
See the performance notes for the Android Platform about using OES mode for best high-resolution video performance.

Oculus Quest
The Quest has special encoding requirements which are detailed in this Blog Post.

macOS / iOS
See the performance notes for the iOS Platform about using YcbCr mode for best high-resolution video performance.





44/136

https://creator.oculus.com/blog/encoding-high-resolution-360-and-180-video-for-oculus-go/

3D Stereo Video
Packed side-by-side or top-bottom stereo video is supported on all platforms.

NOTE

For best results, pad the video size to a multiple to 16 pixels. This will guarantee accurate left-right extraction on all platforms.

Auto-Detection
The stereo packing format of the video will be detected automatically by AVPro Video if the correct metadata is embedded during
encoding. There are two standards for specifying stereo:

Currently the st3d box / atom is supported on all platforms (except DirectShow API in Windows, and MediaPlayer API on
Android). This is the best method to use.
Stereo videos without the above atom may also have stereo data embedded as "SEI FPA (frame packing arrangement)",
however this automatic detection of this is currently only supported on Windows.

Manually Specifying
If the auto-detection is not able to determine the stereo packing format (perhaps because the information is not encoded into the
video file), then the packing format can be explicitly set via the MediaReference asset, or as a fallback MediaHint in the
MediaPlayer when not loading from a MediaReference.

Stereo packing hints can also be set via scripting:

// Setting the fallback stereo packing on the MediaPlayer when loading videos via the Path MediaSource
MediaHints hints = mediaPlayer.FallbackMediaHints;
hints.stereoPacking = StereoPacking.TopBottom;
mediaPlayer.FallbackMediaHints = hints;

Getting Stereo Packing Mode



45/136

https://github.com/google/spatial-media/blob/master/docs/spherical-video-v2-rfc.md#stereoscopic-3d-video-box-st3d

The stereo packing mode that is either automatically detected, or manually specified can be retrieved via scripting:

// Get the stereo packing mode that is used
StereoPacking videoStereoPacking = mediaPlayer.TextureProducer.GetTextureStereoPacking();

Forcing Stereo Eye Mode
It's possible to force the eye mode as well via scripting:

// Use the static VideoRender class to force a stereo eye mode on a material (eg Material used in
ApplyToMesh/ApplyToMaterial)
VideoRender.SetupStereoEyeModeMaterial(material, StereoEye.Left);

NOTE

Be sure to include the UpdateMultiPassStereo component if your stereo application will run in multi-pass mode.



46/136

Transparency
Codecs
Not many video codecs have native support for transparency / alpha channels. Formats supported by some platforms of AVPro
Video are:

HEVC+Alpha
Requires macOS 10.15, iOS 13.0 or tvOS 13.0

Hap
Only supported in Ultra edition
Hap Alpha

Great support on Windows and macOS. Fast and low overhead format, though file size can get large depending
on the content. Currently this is the format we recommend for transparent video.

Hap Q Alpha
Great support on Windows and macOS. Slightly higher quality and file size compared to Hap Alpha.

NotchLC
Only supported in Ultra edition

Uncompressed RGBA / YUVA
Uncompressed isn’t ideal for file size or disk bandwidth but can still be used as a fallback

ProRes 4444
Best support is on macOS. Files can be huge though.

VP6
Legacy format. We support it only via 3rd party DirectShow plugins for Windows (eg LAV Filters)

Alpha Packing

47/136

Perhaps the best option is to encode your videos in video formats that don’t support an alpha channel (eg MP4 as H.264 or HEVC)
by packing the alpha channel into the same frame. You can double the width for a left-right packing layout, or double the height
for a top-bottom packing layout. This packing could be created in software such as AfterEffects, or the command-line FFMPEG
tool can be used.

The packing format is then specified either in the MediaReference or MediaPlayer as part of the MediaHints:

48/136

Authoring Videos with Alpha Packing
Expor ting

NOTE

Export using the "straight" and not "premultiplied" alpha mode. AVPro Video shaders only support straight alpha.

NOTE

For best results, pad the video size to a multiple to 16 pixels. This will guarantee accurate alpha channel extraction on all platforms.

Usually you export your transparent video from your favourite software (eg After Effects). A codec that supports transparency
such as ProRes4444 can be used. Make sure to use "straight" alpha mode. Then another tool such as FFMPEG can be used to
convert that video into the packed alpha layout.

Alpha Packing with FFMP E G

FFMPEG command-line can be used to convert a source video containing a transparency/alpha channel into an alpha packed
format:

Left-right alpha packing:

 ffmpeg -i input.mov -vf "split [a], pad=iw*2:ih [b], [a] alphaextract, [b] overlay=w" -y output-lr.mp4





49/136

Top-bottom alpha packing:

 ffmpeg -i input.mov -vf "split [a], pad=iw:ih*2 [b], [a] alphaextract, [b] overlay=0:h" -y output-tb.mp4

50/136

Subtitles

Various subtitles formats are supported:

WEBVTT
IN HLS

CEA / EIA
608 & 708

TX3G
IN MP4 / MOV

SRT
SIDELOADING

Windows (WinRT / Media Foundation) � � . �

Windows (DirectShow) . . . �

UWP (WinRT / Media Foundation) � � . �

Android (ExoPlayer) � . . �

Android (MediaPlayer) . . . �

macOS � . � �

iOS/iPadOS/tvOS � . . �

WebGL . . . �

When loading media that contains subtitles tracks, the tracks are displayed in the Inspector allowing tracks to be selected and a
preview of the subtitle content to be shown:

51/136

Text tracks can be scripted:

52/136

// Get the number of text tracks
int trackCount = mediaPlayer.TextTracks.GetTextTracks().Count;

// Iterate through the tracks
foreach (TextTrack track in mediaPlayer.TextTracks.GetTextTracks())
{
 Debug.Log(track.DisplayName);
}

// Get information about the active text track
TextTrack track = mediaPlayer.TextTracks.GetActiveTextTrack();
if (track != null)
{
 Debug.Log(string.Format("{0}:{1}", track.Name, track.Language));
}
else
{
 Debug.Log("No active text track");
}

// Set the active text track
mediaPlayer.TextTracks.SetActiveTextTrack(track);

// Get the current text cue
TextCue textCue = mediaPlayer.TextTracks.GetCurrentTextCue();
if (textCue != null)
{
 Debug.Log(textCue.Text);
}

SRT Sideloading

AVPro Video supports external subtitles in the SRT format on all platforms.

// Load subtitles
mediaPlayer.SideloadSubtitles = true;
mediaPlayer.EnableSubtitles(MediaLocation.RelativeToStreamingAssetsFolder, "subtitles.srt");

// Disable subtitles
mediaPlayer.DisableSubtitles();

Displaying
You can create your own system to display subtitles, or use the included SubtitlesUGUI component.

53/136

Video Capture
To make a non-realtime video capture of your Unity scenes which include videos, requires the video playback to slow down or
speed up to match the video capture rate. AVPro Video supports this through the “TimeScale Support” option which is found in
the Global Settings panel of the Media Player component. This means you can create high quality renders running at 1fps to
produce a smooth 60fps video, and any videos in your scene will play back at the correct rate for the recording. Audio is not
supported though when using this option.

54/136

Content Protection
Most of the content protection features are in the Ultra Edition, but the Core edition does support the file offsetting on Android.

File Offset
On Android (this is the only platform that currently supports this feature) in the Core Edition a file offset (in bytes) can be
specified which allows loading of media which is embedded within another file. This is very useful for hiding media.

In Windows you can use the following command via the command-line to easily append your video to a dummy file:

copy /b DummyFile.dat + MyVideo.mp4 MysteryFile.dat

The offset can be set via the UI in the Platform Specific > Android section, or via PlatformOptionsAndroid in scripting:

// Set the Android file offset to 54321 bytes (the size of the dummy file, or the offset into a file if you
have as embedding it within a file)
mediaPlayer.PlatformOptionsAndroid.fileOffset = 54321;

An alternative is to use a dummy video file, and then append your real media to this file, as this will then allow the dummy video
to play instead of your real media, making it not obvious that you're hiding your video.

In Windows you can use the following command via the command-line to easily append your video to a dummy video:

copy /b DummyVideo.mp4 + MyVideo.mp4 MysteryFile.mp4

In Windows you can use the following command to create a batch file for converting multiple files easily:

copy /b DummyVideo.mp4 + %1 %~n1-hidden.mp4

55/136

Seeking / Playback Rate
Seeking
All time operations are done in seconds using doubles:

// After the video is loaded and metadata event fires you can use these:

// Get the media duration in seconds
double duration = mediaPlayer.Info.GetDuration();

// Get current time in seconds
double time = mediaPlayer.Control.GetCurrentTime();

// Get the ranges of time that can be seeked between
TimeRanges seekRanges = mediaPlayer.Control.GetSeekableTimes();

// Seek to 24 seconds
mediaPlayer.Control.Seek(24.0);

// Seek to nearest keyframe at 24 seconds
mediaPlayer.Control.SeekFast(24.0);

// Seek to closest keyframe allowing keyframe to be either ahead, behind or on both sides of the desired time
// This is only currently available on macOS, iOS, iPadOS and tvOS
mediaPlayer.Control.SeekWithTolerance(24.0, 5.0, 0.0);

// Seek to the current 'live' time for a live stream
TimeRange seekableRange = Helper.GetTimelineRange(mediaPlayer.Info.GetDuration(),
mediaPlayer.Control.GetSeekableTimes());
mediaPlayer.Control.Seek(seekableRange.endTime);

Media that has a known constant frame rate can be seeked using frames:

// After the video is loaded and metadata event fires you can use these:

// Get the media duration in frames
int durationFrames = mediaPlayer.Info.GetDurationFrames();

// Get the highest frame number you can seek to (the same as durationFrames-1)
int maxFrame = mediaPlayer.Info.GetMaxFrameNumber();

// Seek to frame 60
mediaPlayer.Control.SeekToFrame(60);

// Seek back 10 frames
mediaPlayer.Control.SeekToFrameRelative(-10.0);

// Get current time in frames
int frame = mediaPlayer.Control.GetCurrentTimeFrames();

If the frame rate can not be determined (eg in some HLS media the frame rate returns zero) then you can still use the frame-
based time methods by manually supplying the frame rate as an optional final parameter to the above methods:

56/136

// After the video is loaded and metadata event fires you can use these:

// Get the media duration in frames
int durationFrames = mediaPlayer.Info.GetDurationFrames(30f);

// Seek to frame 60
mediaPlayer.Control.SeekToFrame(60, 30f);

// Get current time in frames
int frame = mediaPlayer.Control.GetCurrentTimeFrames(30f);

There are some platform differences for seeking behaviour:

FAST APPROXIMATE KEYFRAME SEEKING SLOW ACCURATE FRAME SEEKING

Windows (WinRT / Media Foundation) � �

Windows (DirectShow) � Depends on the codec

Android (ExoPlayer) � �

Android (MediaPlayer) � API 26 and above

macOS � �

iOS/iPadOS/tvOS � �

WebGL � Varies

Playback Rate
Generally we recommend these rates:

0.25, 0.5, 1.0, 1.25, 1.5, 1.75, 2.0

Going up to 4.0 might be possible depending on your platform, machine specs and the codec used. Increasing playback rate
usually places more demand on the video decoder and also on the disk/network source, so these limit how high you can set the
playback rate.

Using negative values isn’t generally recommended as it isn’t as well supported, but if you do have to use a negative rate then
also try keeping the numbers small such as:

-0.25, -0.5, -1.0

Audio also may or may not play when changing the playback rate - this depends on the platform (see table below).

One safe alternative to adjusting rate is to pause the video and fast seek to simulate a change in playback rate. This approach
would work on all platforms.

Video encoding can also help the performance of a change in playback rate. Videos with more key-frames (or ideally all key-
frames) and with less complex encoding (eg no B frames, CABAC disabled etc) will work better. Alternatively a fast key-frame-only
codec could be used, such as Hap.

Scripting playback rate:

57/136

// After the video is loaded and metadata event fires you can use these:

// Get the current playback rate
float rate = mediaPlayer.PlaybackRate;

// Set the current playback rate
mediaPlayer.PlaybackRate = rate * 2f;

There are some platform differences for playback-rate behaviour:

ADJUST PLAYBACK RATE NEGATIVE RATES AUDIO PLAYS

Windows (WinRT / Media Foundation) � � Depends on codec

Windows (DirectShow) � . .

Android (ExoPlayer) � ? �

Android (MediaPlayer) API 23 and above ? �

macOS � Depends on media source �

iOS/iPadOS/tvOS � Depends on media source �

WebGL � . Depends on browser

macOS/iOS/iPadOS/tvOS Playback Rate
By default playback rates higher than 2.0 causes the player to only show key-frames. If you need to play back a video at rates
above 2.0 then you can adjust the "Max Playback Rate" slider in the platform specific options to set a higher threshold. Should
your playback rate exceed this new maximum rate then the player will drop back to showing just key-frames. This option must be
configured prior to creating the player and cannot be changed after the media has been opened.

Optimal Encoding
Most videos are optimally encoded for the typical use case: normal forward playback with approximate seeking.

If you want to start changing the playback rate, play in reverse, allow fast scrubbing, or have fast frame accurate seeking then you
may run into issues where the playback becomes extremely slow or the seeking is not accurate. There are several reasons for this,
but it mostly is related to how the video is encoded and specifically the key-frame distribution. There are also some platform
differences to consider.

Codecs such as H.264 and H.265 generally compress video frames so that they depend on data included with previously decoded
frames. These are called P and B frames and seeking to one of these is computationally expensive, as in order to display them the
decoder must first decode the other frames that they depend on. The other type of frame is called a key-frame or I-frame and
these frames can be decoded immediately because they don’t depend on any other frames. Compressing using P And B frames is
known as temporal compression and isn’t ideal for accurate random seeking or playback rate changes.

For the best results you would encode your video with only key-frames, as then you can seek accurately and quickly anywhere in
the video. This is possible, but increases the file size dramatically. Using FFMPEG you can encode a video to use key-frames only
using the “-g 1” option. Another option would be to use a codec that only supports key-frames, such as Hap or ProRes - but again
these result in large file sizes and limited GPU decoding capabilities.

In most codec with temporal compression the key-frames are spaced every 250 frames. Some platforms can only seek to the key-

58/136

frames (see table above), while others can do accurate seeking but this can be very slow if the distances between key-frames is
too large. Try reducing the key-frame distance for faster seeking. You can also reduce the decoder complexity by encoding with a
fastdecode tuning option.

Here is an example FFMPEG command to encode using H.264 codec with all keyframes for very fast seeking:

ffmpeg -hide_banner -y -i input.mp4 -pix_fmt yuv420p -c:v libx264 -crf 18 -tune fastdecode -x264-params
"keyint=1" output-h264.mp4

See the section about encoding for further information.

59/136

360 Audio
Spatial audio support is currently available using Facebook Audio 360 on Windows desktop, UWP and Android. On Windows,
only Windows 10 and above is supported and the Media Foundation video API must be selected. On Android the ExoPlayer video
API must be selected. The video files must be using a MKV file container and audio must be using the Opus codec encoded with
Facebook Audio 360 tools.

NOTE

Unfortunatly Meta/Facebook are no longer updating their "Facebook Audio 360" technology. The download links for the
Facebook 360 Spatial Workstation authoring tools are currently broken but apparently will be made live soon.

The best way to encode the video is to use the FB360 Encoder tool which comes as part of the FB360 Spatial Workstation. Set
Output Format to “FB360 Matroska (Spatial Workstaton 8 channel)” and then set your video and audio source files and encode
your video. This should create a MKV file with 10 channels of Opus audio.

The settings are located under the Audio section of the MediaPlayer component. The “Head Transform” field must be set to the
transform that represents the player's head so that rotation and positional changes affect the audio rendering. Usually this is the
main camera.

“Enable Focus” can be enabled when a specific region of audio in the 360 field needs to be given focus. The rest of the audio
has its volume reduced.

Next the Facebook Audio 360 support must be enabled for each platform that needs it via the “Platform Specific” panel.
Currently it is only available on Windows desktop and Android.

The Channel Mode must be set to the channel encoding mode used when creating the video. Currently this can not be
determined automatically. The default is TBE_8_2 which means 8 channels of hybrid ambisonics and 2 channels of head-locked



60/136

stereo audio.

// Set the head transform for audio
mediaPlayer.AudioHeadTransform = Camera.main;

// Set the MediaPlayer for spatial audio on Android - ExoPlayer API only
mediaPlayer.PlatformOptionsAndroid.videoApi = Android.VideoApi.ExoPlayer;
mediaPlayer.PlatformOptionsAndroid.audioOutput = Android.AudioOutput.FacebookAudio360;
mediaPlayer.PlatformOptionsAndroid.audio360ChannelMode = Audio360ChannelMode.TBE_8_2;

// Set the MediaPlayer for spatial audio on Windows - Media Foundation API only
mediaPlayer.PlatformOptionsWindows.videoApi = Windows.VideoApi.MediaFoundation;
mediaPlayer.PlatformOptionsWindows.audioOutput = Windows.AudioOutput.FacebookAudio360;
mediaPlayer.PlatformOptionsWindows.audio360ChannelMode = Audio360ChannelMode.TBE_8_2;

Encoding with Facebook 360 Spatial WorkStation
More information on encoding etc can be found on the Facebook Audio 360 website at:
https://facebookincubator.github.io/facebook-360-spatial-workstation/.

Alternative steps for encoding manually
1. Create a WAV file with the audio format they need (Eg 9 channels ambisonics with 2 channels of head-locked audio will

require a 11 channel WAV file with the 2 head-locked channels at the end)

2. Use Opus tools, as described here to convert the WAV file to Opus: https://opus-codec.org/downloads/
https://facebookincubator.github.io/facebook-360-spatial-
workstation/Documentation/SDK/Audio360_SDK_GettingStarted.html#encoding-opus-files

3. Use ffmpeg to mux this opus file into the video container (ensure that the video file doesn’t have any audio first):

ffmpeg -i audio.opus -i video.mp4 -c:a copy -c:v copy audio_video.mkv

4. In AVPro Video specify the required channel map

Converting existing ambisonic videos
It is also possible to convert existing ambisonic videos so they are compatible. For example if you have an existing MP4 file with
4-channel 1st order ambisonic audio, then it is possible to convert this into the above format (MKV container with Opus audio)
using a tool like FFMPEG. Simply put the following command in a .BAT file and then drag your MP4 into the batch file:

ffmpeg -y -i input.mp4 -c:v copy -acodec libopus -mapping_family 255 output.mkv

This should then generate an MKV file that you can play with AVPro Video. All that remains is to set the channel mapping in the
MediaPlayer component to AMBIX_4.

61/136

https://facebookincubator.github.io/facebook-360-spatial-workstation/
https://opus-codec.org/downloads/
https://facebookincubator.github.io/facebook-360-spatial-workstation/Documentation/SDK/Audio360_SDK_GettingStarted.html#encoding-opus-files

10-Bit Video
AVPro Video has growing support for playback of 10-bit content. Encoding videos as 10-bit can give improved quality for very
little extra storage space, especially for gradients.

NOTE

We are not talking about HDR videos here. We're simply talking about videos encoded with a higher per-pixel bit depth.

NOTE

Even if you are displaying the 10-bit video on an 8-bit screen, there are still quality benefits to using 10-bit video.

WARNING

Ability to decode 10-bit depending on your operating system and GPU capabilities. This is still a relatively new technology and shouldn't be used
if compatibility is a high priority.

Editions
Ultra Edit ion

The Ultra edition now supports 10-bit textures on Windows, macOS, iOS and tvOS.

Core Edit ion

On the Core Edition only 8-bit textures are supported. In this case the 10-bit videos will be rendered to 8-bit, either directly or
sometimes the driver will apply some smart dithering.

Platform Specifics
Windows Suppor t

In the Ultra Edition you can specify to use 10-bit textures (in the Platform Specific section). This will give the best results when
displaying to a 10-bit back buffer and monitor. We have found that using the WinRT API setting gives the best quality decode for
10-bit, whereas Media Foundation API setting still seems to add some sort of dithering/resolve step.

Currently Windows is only officially supported:

H.264 MAIN 10 PROFILE HEVC MAIN 10 PROFILE VP9 AV1

Windows (WinRT / Media Foundation) . � ? ?

Windows (DirectShow) � � ? ?

 Microsoft's H.264 Decoder doesn't support the Main 10 profile or output to 10-bit (P010) textures

 Requires Windows 10 and Microsoft's HEVC Video Extensions. WinRT API gives the best quality results

 Only when using a suitable 3rd-party codec such as LAV Filters

iOS / macOS / tvOS

iOS 11.0 and above







1 2

3 3

1

2

3

62/136

https://docs.microsoft.com/en-us/windows/win32/medfound/h-264-video-decoder
https://www.microsoft.com/en-us/p/hevc-video-extensions/9nmzlz57r3t7?activetab=pivot:overviewtab

Only HEVC Main 10 Profile is supported.

iOS, macOS and tvOS will automatically generate textures capable of supporting 10 bits per component when the source media is
10-bit.

Depending on the texture format chosen this will be:

TEX TURE FORMAT

BGRA

Y CbCr 420

Other platforms

This is a new feature which we hope to expand support and documentation for soon.

Encoding
Using the command-line tool FFMPEG we have found the following command useful in testing:

ffmpeg -y -i %1 -pix_fmt yuv420p10le -color_primaries 1 -color_trc 1 -colorspace 1 -color_range 2 -crf 4 -
vcodec libx265 -movflags +write_colr -movflags +faststart %i-hevc-10bit-rec709-high.mp4

NOTE

For best results use Rec709 as we do not yet support other primaries/colorspaces and incorrect rendering of colours will result otherwise.



63/136

Hap Codec
The Hap video codec is natively supported by AVPro Video on macOS and Windows in the Ultra Edition, and has the following
benefits:

Low CPU usage
Low memory usage
GPU decompression
Supports very high resolutions
Supports alpha channel transparency
Fast seeking and variable playback speed
Doesn't use GPU video decoding resources

The main downside is:

Very large files

Windows Support
Hap, Hap Alpha, HapQ, HapQ Alpha and HapR are supported. AVI and MOV containers can both be used in Windows however we
recommend the MOV container. Hap currently requires either the “DirectShow” or “Media Foundation” video API to be used.

WARNING

There is currently a bug in Windows that prevents MOV files with a bitrate of more than 4Gbps from playing. We have created a fix for this which
is activated by enabled "Use Custom MOV Parser" in Platform Specific >Windows options.

Options

On Windows some options are exposed for Hap and NotchLC decoding:

Use Custom MOV Parser

Enables our custom MOV parser to be used, which is useful for Hap and NotchLC codecs, as a Microsoft parser is not
able to open very high bit-rate MOV files. If your files are high bit-rate (above 4Gbps) then use this option otherwise
the file will not load.

Parallel Frame Count

Maximum number of threads to use for parallel frame decoding. Less threads for less latency in playback
operations (seeking, playing etc), more threads for better performance.

Preroll Frame Count

Amount of frames to decoder before starting playback, less frames for less latency in seeking, more frames for
less chance of buffer emptying too quickly.

macOS Support
Hap, Hap Alpha, HapQ, HapQ Alpha and HapR are supported.

Encoding
NOTE

Width and height must be multiple of a 4 for Hap encoded videos in AVPro Video. Ideally a width with a multiple of 16 is best for performance





64/136

https://hap.video/

(aligned copy).

JOKYO

In 2020 Jokyo introduced their fast and high quality Hap encoder with plugins for Adobe After Effects, Premiere Pro etc:
https://jokyohapencoder.com

FFMPEG

Alternatively you can use a recent build of FFMPEG with the following command-lines:

ffmpeg -i input.mov -vcodec hap -format hap output-hap.mov

ffmpeg -i input.mov -vcodec hap -format hap_alpha output-hap.mov

ffmpeg -i input.mov -vcodec hap -format hap_q output-hap.mov

Notes:

You can also add the -chunks 4 option which will encode each frame into 4 chunks so the decoding work can be split
across multiple threads, resulting in faster decoding as long as the disk can keep up.
Hap Alpha requires straight alpha (not pre-multipled).
Sadly ffmpeg doesn’t yet support the HapQ Alpha format.
We don’t support Hap Q Alpha variant in Windows when using the legacy D3D9 graphics API
See Encoding Notes for more details

65/136

https://jokyohapencoder.com/

NotchLC Codec

NotchLC is a product of 10bitFX Limited (www.notch.one)

The NotchLC video codec is natively supported by AVPro Video on Windows in the Ultra Edition, and has the following benefits:

Low CPU usage
Low memory usage
GPU decompression
10-bit colour
Supports very high resolutions
Supports alpha channel transparency
Fast seeking and variable playback speed
Higher quality than the Hap codec
Doesn't use GPU video decoding resources

The main downside is:

Very large files

Windows Support
AVI and MOV containers can both be used in Windows however we recommend the MOV container. NotchLC currently requires
the “Media Foundation” video API to be used.

WARNING

There is currently a bug in Windows that prevents MOV files with a bitrate of more than 4Gbps from playing. We have created a fix for this which
is activated by enabled "Use Custom MOV Parser" in Platform Specific >Windows options.

Options

On Windows some options are exposed for Hap and NotchLC decoding:

Use Custom MOV Parser

Enables our custom MOV parser to be used, which is useful for Hap and NotchLC codecs, as a Microsoft parser is not
able to open very high bit-rate MOV files. If your files are high bit-rate (above 4Gbps) then use this option otherwise
the file will not load.

Parallel Frame Count

Maximum number of threads to use for parallel frame decoding. Less threads for less latency in playback
operations (seeking, playing etc), more threads for better performance.

Preroll Frame Count

Amount of frames to decoder before starting playback, less frames for less latency in seeking, more frames for
less chance of buffer emptying too quickly.



66/136

https://notchlc.notch.one/

Encoding
Encoding notes are in the Notch user manual

67/136

http://manual.notch.one/0.9.23/en/topic/notchlc

Content Protection
Content protection schemes supported by the plugin are summarised as:

Windows Desktop & UWP

Custom HTTP header fields can be specified which can help with server side validation (requires using the WinRT API).
This is only supported for adaptive media (HLS/DASH).

HLS with AES-128 clear-key, direct key and key request is supported

Android

Custom HTTP header fields can be specified which can help with server side validation

HLS with AES-128 clear-key, direct key and key request is supported (make sure your TS segments are 188 bytes
aligned for maximum Android compatibility)

A file offset feature allows you to access files hidden within a file at an offset.

macOS / iOS / tvOS

HLS with AES-128 clear-key, direct key and key request using an auth token in the HTTP header (“Authorization” field).
More information about HLS encryption can be read in the RFC here: https://tools.ietf.org/html/draft-pantos-http-live-
streaming-23

Custom HTTP header fields can be specified which can help with server side validation

NOTE

DRM schemes Fairplay, Widevine, PlayReady etc are not yet supported

File Offset
On Android (this is the only platform that currently supports this feature) in the Core Edition a file offset (in bytes) can be
specified which allows loading of media which is embedded within another file. This is very useful for hiding media.

In Windows you can use the following command via the command-line to easily append your video to a dummy file:

copy /b DummyFile.dat + MyVideo.mp4 MysteryFile.dat

The offset can be set via the UI in the Platform Specific > Android section, or via PlatformOptionsAndroid in scripting:

// Set the Android file offset to 54321 bytes (the size of the dummy file, or the offset into a file if you
have as embedding it within a file)
mediaPlayer.PlatformOptionsAndroid.fileOffset = 54321;

An alternative is to use a dummy video file, and then append your real media to this file, as this will then allow the dummy video
to play instead of your real media, making it not obvious that you're hiding your video.

In Windows you can use the following command via the command-line to easily append your video to a dummy video:

copy /b DummyVideo.mp4 + MyVideo.mp4 MysteryFile.mp4

In Windows you can use the following command to create a batch file for converting multiple files easily:

copy /b DummyVideo.mp4 + %1 %~n1-hidden.mp4



68/136

https://tools.ietf.org/html/draft-pantos-http-live-streaming-23

Custom HTTP Headers
Custom HTTP headers can be specified in the Ultra Edition. Typically we have seen them used for authentication, token exchange
and cookies. Here are Some examples of formats we’ve used in the past:

For authentication the typical HTTP headers are:

Authorization Basic <username>:<password>
Authorization Bearer <token>

For cookies the typical HTTP headers are:

Cookie <cookie-name>=<cookie-value>;<cookie-name2>=<cookie-value2>;

NOTE

On Windows custom HTTP headers are only supported on the WinRT API, and are only supported for adaptive media (HLS and DASH).

NOTE

On Android custom HTTP headers are only supported on the ExoPlayer API, the MediaPlayer API doesn't support this.

In the plugin custom headers can be specified via the component UI or via script. Using the component UI you would specify them
like:

NOTE

The fields will turn red in the editor if the format is not correct

Or via scripting:







69/136

// On Windows the Video API needs to be set to WinRT to use custom HTTP headers
mediaPlayer.PlatformOptionsWindows.videoApi = Windows.VideoApi.WinRT;

// Set custom HTTP headers on Android platform
mediaPlayer.PlatformOptionsAndroid.httpHeaders.Add("Authorization", "Bearer <token>");
mediaPlayer.PlatformOptionsAndroid.httpHeaders.Add("Cookie", "<cookie-name>=<cookie-value>;<cookie-name2>=
<cookie-value2>;");

// For Basic Authorization the <username>:<password> should be base64 encoded:
string username = "user";
string password = "password";
string base64token = System.Convert.ToBase64String(System.Text.Encoding.UTF8.GetBytes(username + ":" +
password));
mediaPlayer.PlatformOptionsAndroid.httpHeaders.Add("Authorization", "Basic " + base64token);

// Set custom HTTP headers on the currently running platform
mediaPlayer.GetCurrentPlatformOptions().httpHeaders.Add("MyHlsUriToken", "1234567890");

NOTE

Basic Authorization headers don't appear to work when using WinRT and RTSP streams

NOTE

Internally custom HTTP headers are passed in this string format: name1:value1\r\nname2:value2

HLS AES-128 Encrypted Playback
In the Ultra Edition AES-128 HLS streams are supported. This allows playback of encrypted content with secure key exchange.
There is support on macOS, iOS, tvOS, Android (only using Exoplayer API), Windows and UWP (only using WinRT API).

Key retrieval from a server URL usually requires an authentication token, which can be specified using the member
keyServerToken) , or this can be ignored if your key retrieval server doesn’t require any token for key retrieval (clear-key). The
auth token is a string that is inserted into the “Authorization” HTTP field when retrieving the decryption key from the server URL
specified in the HLS manifest. Sometimes this field has the "Bearer" prefix.

We also added some functionality to specify the decryption key data directly. overrideDecryptionKey can be used to specify the
key directly as an array of bytes. Using this will bypass any server key retrieval, which can be useful for debugging.

Scripting examples:





70/136

// On Windows the Video API needs to be set to WinRT to use AES-128 keys
mediaPlayer.PlatformOptionsWindows.videoApi = Windows.VideoApi.WinRT;

// Set the authentication token for the key server to allow access of the decryption key for iOS platform
mediaPlayer.PlatformOptionsIOS.keyAuth.keyServerToken =
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1cm46bWljcm9zb2Z0OmF6dXJlOm1lZGlhc2VydmljZXM6Y29udGVudGtleWlkZW50aWZp
ZXIiOiI5ZGRhMGJjYy01NmZiLTQxNDMtOWQzMi0zYWI5Y2M2ZWE4MGIiLCJpc3MiOiJodHRwOi8vdGVzdGFjcy5jb20vIiwiYXVkIjoidXJuOn
Rlc3QiLCJleHAiOjE3MTA4MDczODl9.lJXm5hmkp5ArRIAHqVJGefW2bcTzd91iZphoKDwa6w8");

// Just specify a decryption key manually for iOS platform
mediaPlayer.PlatformOptionsIOS.keyAuth.overrideDecryptionKey = new byte[] { 12, 95, 93, 64, 234, 76, 93, 64,
125, 0, 95, 23 };

// Just specify a decryption key manually using base64 for Windows platform
mediaPlayer.PlatformOptionsWindows.keyAuth.overrideDecryptionKey = Convert.FromBase64String(base64Key);

// Just specify a decryption key manually loading from a 16 byte .key file for Windows platform
mediaPlayer.PlatformOptionsWindows.keyAuth.overrideDecryptionKey =
System.IO.File.ReadAllBytes("C:/myfile.key");

These options can also be specified in the MediaPlayer inspector UI (in the Platform Specific section) under HLS Decryption:

71/136

Caching
You can now cache online media items for future playback on certain platforms. The media player will automatically playback
from the cache when a media item is present, otherwise the behaviour will be exactly the same as before with media being played
over the internet.

Currently caching is not automatic and you need to specifically request that media is added to the cache.

You can check if the current platform supports caching as follows:

if (mediaPlayer.Cache.IsMediaCachingSupported())
{
 // Caching is supported
}

In order to add media to the cache, call:

mediaPlayer.Cache.AddMediaToCache(url, headers, options);

where:

url is the URL of the asset to cache
headers are any HTTP headers required to access the asset
options are any options to configure how the media is cached:

minimumRequiredBitRate the lowest bitrate that is acceptable to cache
minimumRequiredResolution the lowest resolution that is acceptable to cache
maximumRequiredBitRate the highest bitrate that is acceptable to cache (Android only)
maximumRequiredResolution the highest resolution that is acceptable to cache (Android only)

To remove media from the cache, call:

mediaPlayer.Cache.RemoveMediaFromCache(url);

where:

url is the URL of the asset to remove

To stop the caching of a media item:

mediaPlayer.Cache.CancelDownloadOfMediaToCache(url)

where:

url is the URL of the asset to cancel caching

To pause an active caching download of a media item (Android only):

mediaPlayer.Cache.PauseDownloadOfMediaToCache(url)

where:

url is the URL of the asset to pause caching

To resume a paused caching download of a media item (Android only):

mediaPlayer.Cache.ResumeDownloadOfMediaToCache(url)

72/136

where:

url is the URL of the asset to resume caching

To get the status of media in the cache:

float progress = 0.0f;
CachedMediaStatus status = mediaPlayer.Cache.GetCachedMediaStatus(url, ref progress);

where:

url is the URL of the asset to cancel caching
progress returns the current progress in the range 0...1 of the download should the returned status be
CachedMediaStatus.Caching and status is one of:
CachedMediaStatus.NotCached the media is not cached
CachedMediaStatus.Caching the media is currently being cached
CachedMediaStatus.Cached the media is cached

To see if the currently open media will play or is playing from the cache:

if (mediaPlayer.Cache.IsMediaCached())
{
 // The open media is cached
}

Platform specifics
Android

The following limitiations exist for Android:

Storing and playback of media from cache is currently only supported when using the ExoPlayer API path for playback.
Cached media items are downloaded to the default external cache folder. They are stored in a proprietary ExoPlayer format
and are not readable/usable externally from the ExoPlayer architecture.
Only remote video files can be cached to the local file system.
HLS/DASH/SmoothStream and MP4 can all be cached.
Playback whilst caching is possible but will depend on the available network resources.
Currently only caching of clear-key (where the key is included in the manifest) AES encrypted streams is supported.
The following MediaCachingOptions will not be supported: title , artwork .

iOS

Cached media items are listed in the Settings app in the iPhone Storage or iPad Storage page of the General section. By default
the name given to the items is taken from the URL so it might not be that user friendly. You can use the title and artwork
members of the MediaCachingOptions class to provide more user friendly details as follows:

MediaCachingOptions options = new MediaCachingOptions();
options.title = "User Friendly Name";

TextAsset artwork = Resources.Load<TextAsset>("artwork.png");
if (artwork)
{
 options.artwork = artwork.bytes;
}

_mediaPlayer.Cache.AddMediaToCache("https://example.com/media/movie.m3u8", null, options);

The following limitiations exist for iOS:
73/136

https://developer.android.com/reference/android/content/Context#getExternalCacheDir()

iOS 11.0 and above
Only caching of HLS videos is supported, not progressive downloads (i.e. mp4 files).
Only caching of VOD streams is supported, Live streams will fail unless the stream has already finished and is complete in
the manifest.
Playback whilst caching is possible but will depend on the available network resources. Caching is likely to be paused whilst
a video is playing in order to maintain the best playback quality for the viewer.
Currently only the variants marked as DEFAULT in the playlist will be cached.
Cached videos may be removed by the system if storage space is low on the device.
Currently only caching of clear-key (where the key is included in the manifest) AES encrypted streams is supported.
MediaCachingOptions.minimumRequiredResolution is supported on Android and iOS 14.0 and later only.
MediaCachingOptions.maximumRequiredBitRate and MediaCachingOptions.maximumRequiredResolution are not
supported.
Currently Pause/Resume of an active video caching download is not supported.

macOS / tvOS

Caching is not currently supported on macOS or tvOS.

Windows / UWP

Caching is not currently supported on Windows or UWP.

74/136

Smooth Video (Experimental)
WARNING

This is an experimental feature.

This feature allows video playback to be perfectly smooth by not dropping or duplicating frames and presenting frames at the
same rate at the display refresh rate.

This is particularly important for very large video walls where a single glitch in playback can be very noticable.

Limitations
1. This feature only works on Windows and uses the Media Foundation API.
2. Hap/NotchLC codecs are not supported

Setup
To use this feature:

1. Add the text AVPROVIDEO_SUPPORT_BUFFERED_DISPLAY to
Edit > Project Settings > Player > Scripting Define Symbols . You can also enable Developer Mode in the
Global Section of the MediaPlayer component, and then tick the Support Buffered Display option.

2. Now a new Frame Selection option will be available in the MediaPlayer component . Set this to Elapsed Time Vsynced .

3. Ensure that vsync is enabled in your application (Edit > Project Settings > Quality). In the Unity editor make sure it's
also enabled in the Game View.

4. Ensure that your display vsync rate is a perfect multiple of your media frame rate. For example a display that is 60 FPS is
fine for media that is 60 or 30 FPS.

5. For best results your video shouldn't contain audio, but if they do then the audio may slightly ahead of the video. In this
case you can enable the option Use Audio Delay to counteract this.

6. Don't run any scripts etc that delay the main thread, otherwise sync may be lost

NOTE

In the Unity editor it is difficult to achieve perfect playback. For best results play using a standalone IL2CPP build (ideally with full-screen mode
set to exclusive).





75/136

How it works
1. When the video loads it will being playing internally (pre-roll) and buffer those frames.
2. Once pre-roll is complete the video can begin playback.
3. Scripted logic selects which frame to display from the collection of buffered frames, based on vsync rate, Unity dropping

frames etc.
4. Meanwhile the buffers are continued to be filled up ahead of what is being displayed
5. As long as the buffers are used and filled at the same rate, smooth playback should continue.

Debugging
We added some monitors to help understand how the buffers are logic are performing:

The Buffers section shows the health of the buffers. For best results Buffered Frames should be at least 4 and Free Frames
should be at least 3.

It can be difficult to spot dropped or duplicated frames, so the Presentation Quality section tries to detect these and give you
an overview on the smoothness.

76/136

Media P layer

The MediaPlayer component is the primary component of AVPro Video. It handles loading of media, setting playback options,
playback and interacting with the other AVPro Video components.

This component does not display the video in the Unity scene. For this you need to use one of these components: ApplyToMesh,
ApplyToMaterial, DisplayUGUI, DisplayIMGUI or your own custom script.

This is a complex component and is split into several sections.

P review

77/136

Shows a preview of the playing media and allows control of playback and loading of media. The currently buffered range is
shown in green on the timeline control.

Media I nfo

Shows information about the media that is currently loaded, including resolution, frame rate (if known), current playback frame
rate and track information. Tracks can be switched between and the active text track will show a preview of the current text cue.

Source

Specifies the location of the media to load. The Load button will load the media immediately. The folder button will show a popup
menu allowing file browsing, or shortcuts to recently loaded media or MediaReference assets. See the Loading Media section for
more information.

Proper t ie s

PROPERTY FUNCTION

Media Source Specifies the type of source - either Media Reference or Path. Media Reference allows selection of an existing media asset.
Path allows specifying media direct into the MediaPlayer.

Media
Reference The MediaReference asset to use for loading.

78/136

Source Path The location of the media (URL or file path).

Fallback
Media Hints

 Transparency This hint specified whether the media contains any transparency

 Alpha
Packing If the transparency hint is enabled then an optional Alpha Packing hint can be specified.

 Stereo
Packing The packing layout for stereo video

PROPERTY FUNCTION

Main

Proper t ie s

PROPERTY FUNCTION

Auto Open Open/Load the media on Start

Auto Play Play the media as soon as it has loaded

Loop Loop the playback

Playback Rate Speed up or slow down playback by this rate

Persistent Uses Unity's Object.DontDestroyOnLoad() to preserve this GameObject during scene loads

Force File
Format

Allows a format to be specified when the correct file extension is not used. This is only supported on Android (using
ExoPlayer).

Audio

Proper t ie s

79/136

PROPERTY FUNCTION

Volume Volume in 0..1 range

Balance Stereo balance in -1..1 range

Muted Whether to mute audio playback

Audio 360

 Head
Transform

Set to the transform that represents the player's head so that rotation and positional changes affect the audio
rendering. Usually this is the main camera

 Enable Focus Enable when a specific region of audio in the 360 field needs to be given focus. The rest of the audio has its volume
reduced.

 Off Focus Level
DB -24..0 range in decibels. How much to reduce the volume by for out of focus audio

 Focus Width
Degrees 40..120 range in degrees. The angle range for in focus audio

 Focus
Transform Transform to use for focus if different from the head transform.

V isual

Proper t ie s

PROPERTY FUNCTION

Filter The texture filter mode to set on the video frame texture

Wrap The texture wrap mode to set on the video frame texture

Aniso The anisotropic filter level to set on the video frame texture

Video
Mapping

A hint to specify the layout of the video (eg equirectangular, or 180 degree). This is used by some AVPro Video shaders to
determine how to display the video

Use
Resampler

Enable the video frame resampler. This is useful to smooth out rendering by buffering frame textures and showing them at the
correct time, or even blending frames together

80/136

Resample
Mode

POINT selects the best buffered frame texture to display.
BILINEAR allows blending between the two best frames

PROPERTY FUNCTION

Network

Proper t ie s

PROPERTY FUNCTION

Custom HTTP
Headers Set multiple custom HTTP headers by specifying the header key and value pair.

Auth Token The authorisation token to pass to the key server for HLS AES-128 decryption.

Key Override
(Base64)

The authorisation key to use for HLS AES-128 decryption. This allows a key to be forced in debugging cases where the
key server is offline.

Subtit les

Proper t ie s

PROPERTY FUNCTION

Sideload Subtitles Enable sideloading of subtitles

Source Path The location of the subtitle SRT file to sideload

Events

81/136

Proper t ie s

PROPERTY FUNCTION

Events Specify methods to call for triggered events

Triggered Events A mask to allow events to be disabled for performance reasons

Pause Media On App Pause Pause media playback when the application is paused (eg switched to the background)

Play Media On App Unpause Resumed media playback when the application is unpaused (eg switched to foreground)

P latform Specific - Windows

Proper t ie s

PROPERTY FUNCTION

Video API
Select the video API to use. Media Foundation is the default. DirectShow is a legacy API but can be useful
for loading many file formats when a codec pack is installed (eg LAV Filters). WinRT is the new Windows
API and has better support for adaptive streaming media, but doesn't support many other features (eg
Unity audio)

Media Foundation API
Options

82/136

 Hardware Decoding Enable hardware decoding

 Use Low Latency Enable low latency mode (not recommended as it degrades playback performance)

 Use Stereo Detection Disable for extra performance if stereo packed videos are not required or the stereo packing mode is
manually specified

 Use Text Tracks Disable if text track support is not required as this can improve loading time. Enabled by default.

 Frame Selection Experimental feature to allow prebuffering of frames and then logic to decide which frame to display,
allowing for smoother playback and easier syncing of multiple videos.

 Frame Selection Options

 Pause After Preroll
Complete Whether to pause playback automatically once prerolling has completed. Disabled by default.

 Hap / NotchLC Options

 Use Hap/NotchLC Disable for extra performance if Hap/NotchLC are not required

 Use Custom MOV Parser Enabled our custom MOV parser to be used, which is useful for Hap and NotchLC codecs, as a Microsoft
parser is not able to open very high bit-rate MOV files.

 Parallel Frame Count Maximum number of threads to use for parallel frame decoding. Less threads for less latency in playback
operations (seeking, playing etc), more threads for better performance.

 Preroll Frame Count Amount of frames to decoder before starting playback, less frames for less latency in seeking, more
frames for less chance of buffer emptying too quickly.

 Use Facebook Audio 360 Disable if Facebook Audio 360 support is not required as this can improve loading time. Enabled by
default.

 Audio Output

The audio output mode.
System Direct (default): Plays the audio directly to the hardware bypassing Unity.
Unity: Sends the audio to Unity for playback via the AudioOutput component.
Facebook Audio 360: Supports playing MKV files with spatial audio encoded using Facebook Audio 360.

 Facebook Audio 360
Options

 Channel Mode The channel layout to use, usually TBE_8_2 or AMBIX_4

WinRT API Options

 Start Max Bitrate Forces adaptive streams to begin at the highest bitrate available

 Use Low Live Latency Use the lowest latency possible when playing a live stream

 Custom HTTP Headers Set multiple custom HTTP headers by specifying the header key and value pair.

 Auth Token The authorisation token to pass to the key server for HLS AES-128 decryption.

PROPERTY FUNCTION

83/136

 Key Override (Base64) The authorisation key to use for HLS AES-128 decryption. This allows a key to be forced in debugging
cases where the key server is offline.

DirectShow API Options

 Force Audio Output Device Specify name of the audio output device to use if using the default device is not desired

 Preferred Filters

Force named DirectShow filters to be used as first priority. For example, "LAV Video Decoder" could be
specified here to prefer it over the Microsoft decoders. Use "GDCL-MPEG4" to force internal MP4
demuxer which can be needed using OpenMediaFromBuffer() as some codec packs (eg StarCodec64)
cause problems opening MP4 files into a buffer.

PROPERTY FUNCTION

P latform Specific - iOS / macOS / tvOS

Proper t ie s

PROPERTY FUNCTION

Texture Format
BGRA is the default.
YCbCr420 can be specified to save memory and potentially improve performance. With YCbCr420 the
AVPro Video shaders are required for display, unless the texture resolve option is used.

Generate Mipmaps Enable generation of texture mipmaps which is useful to improve filtering quality when the video texture
is scaled down on screen.

Audio Mode

System Direct: Audio is played directly by the device bypassing Unity. This is the default mode.
Unity: Audio is played by Unity via the AudioOutput component. HLS media is not supported and will
play as if in system direct mode.
System Direct With Capture: Audio is played directly by the hardware bypassing Unity with PCM data
being available via MediaPlayer.Control.GrabAudio() . HLS media is not supported.

Allow External Playback Enable playback on external devices via Airplay

Resume Playback After Audio
Session Route Change

The default behaviour is for playback to pause when the audio route changes, for instance when
disconnecting headphones.

Max Playback Rate Set the maximum playback rate that you expect to use

84/136

NETWORK

Preferred Maximum Resolution Limits the maximum resolution the video will playback at (HLS only).

Preferred Peak Bitrate Puts an upper limit on the network bandwidth used for playback. Use 0 for no limit. Defaults to 0.

Preferred Forward Buffer
Duration

The preferred duration in seconds to buffer in advance of the playhead position in order to minimise
stalls. Use 0 to let the system decide based on the current network conditions. Defaults to 0.

Play Without Buffering Reduces latency when starting playback from a network source at the risk of an increased chance of
playback stalling

HLS DECRYPTION

Auth Token The authorisation token to pass to the key server for HLS AES-128 decryption.

Key Override (Base64) The authorisation key to use for HLS AES-128 decryption. This allows a key to be forced in debugging
cases where the key server is offline.

CUSTOM HTTP HEADERS

Set multiple custom HTTP headers by specifying the header key and value pair.

P latform Specific - Android

Proper t ie s

PROPERTY FUNCTION

Video API
Select the media API to use.
ExoPlayer is the default and is the most flexible option.
MediaPlayer uses the built-in Android API.

Use OES Rendering Enables the OES rendering optimisation. This saves memory and improves performance and is most
useful for very high resolution video playback. See Android platform notes for more details.

85/136

Custom HTTP Headers Set multiple custom HTTP headers by specifying the header key and value pair.

MediaPlayer API Options

 Show Poster Frame If the video is not set to auto play, then when it is loaded this option will force a play and then pause so
that the first (poster) frame is rendered.

ExoPlayer API Options

 Prefer Software Decoder Use the software video decoder when possible. This is mostly for internal debugging and should never be
used for production.

 Force Rtp TCP Force using TCP as the default RTP transport.

 Audio Output
System Direct (default): Audio is played directly to the hardware, bypassing Unity.
Unity: Audio is played by Unity via the AudioOutput component.
Facebook Audio 360: Supports playing MKV files with spatial audio encoded using Facebook Audio 360.

 Facebook Audio 360
Options

 Channel Mode The channel layout to use, usually TBE_8_2 or AMBIX_4

 Audio Latency (ms) Audio latency to add (-ve will play audio sooner, +ve later)

 Adaptive Stream Options

 Start Max Bitrate Start an adaptive stream (eg HLS) at the highest bit-rate possible

 Preferred Maximum
Resolution Specify the maximum resolution to limit bandwidth usage

 Preferred Peak Bitrate For HLS videos, puts an upper limit on the network bandwidth used for playback.

 Minimum Buffer Ms The minimum duration of media that the player will attempt to ensure is buffered at all times, in
milliseconds.

 Maximum Buffer Ms The maximum duration of media that the player will attempt to buffer, in milliseconds.

 Buffer for Playback Ms The duration of media that must be buffered for playback to start or resume following a user action such
as a seek, in milliseconds.

 Buffer for Playback After
Rebuffer Ms

The default duration of media that must be buffered for playback to resume after a rebuffer, in
millisecond.

PROPERTY FUNCTION

P latform Specific - Windows UWP

86/136

Proper t ie s

PROPERTY FUNCTION

Video API
Select the video API to use. WinRT is the default. WinRT is the new Windows API and has better support
for adaptive streaming media, but doesn't support many other features (eg Unity audio) which Media
Foundation API does support.

Media Foundation API
Options

 Hardware Decoding Enable hardware decoding

 Generate Mipmaps Generate textures with mip maps

 Use Low Latency Enable low latency mode (not recommended as it degrades playback performance)

 Audio Output

The audio output mode.
System Direct (default): Plays the audio directly to the hardware bypassing Unity.
Unity: Sends the audio to Unity for playback via the AudioOutput component.
Facebook Audio 360: Supports playing MKV files with spatial audio encoded using Facebook Audio 360.

 Facebook Audio 360
Options

 Channel Mode The channel layout to use, usually TBE_8_2 or AMBIX_4

WinRT API Options

 Start Max Bitrate Forces adaptive streams to begin at the highest bitrate available

 Use Low Live Latency Use the lowest latency possible when playing a live stream

 Custom HTTP Headers Set multiple custom HTTP headers by specifying the header key and value pair.

87/136

 Auth Token The authorisation token to pass to the key server for HLS AES-128 decryption.

 Key Override (Base64) The authorisation key to use for HLS AES-128 decryption. This allows a key to be forced in debugging
cases where the key server is offline.

PROPERTY FUNCTION

P latform Specific - WebG L

Proper t ie s

PROPERTY FUNCTION

External Library
Whether to use any external JS library for video decoding. This requires that the javascript is included in
the HTML. Currently Dash.JS and HLS.JS are supported. A custom library can also be specified and would
require editing of the AVProVideo.js file to add support for it. See WebGL streaming information for more
details.

Generate Mipmaps Enable generation of texture mipmaps which is useful to improve filtering quality when the video texture
is scaled down on screen.

G lobal

Global per-platform settings. These options need to be set for each platform (via Build Settings > Switch).

Proper t ie s

PROPERTY FUNCTION

TimeScale
Support

Enable support for video playback to react to changes in Time.TimeScale. This is mostly useful for offline video capture where
capturing is not running in real-time. Audio playback will not work during captures as the video is paused and simply seeks to
the desired position.

Disable
Debug
GUI

Deprecated

Disable
Logging Disables all the "[AVProVideo]" debug logging

Developer
Mode Enables the Developer section on the MediaPlayer inspector view which shows internal state

88/136

89/136

Media Reference

Media Reference is a ScriptableObject asset used to define media location and properties. These are used with the MediaPlayer
to load new media in a convenient manner. Media Reference is similar to VideoClip asset in Unity.

The "Generate Thumbnail" button will generate a previous thumbnail which can make finding media easier. Note these
thumbnails are editor only and are not included in builds. The horizontal slider allows setting the time in the video at which to
capture the thumbnail. The toggle "Zoom To Fill" allows thumbnail image to fill the entire area of the square thumbnail,
regardless of aspect-ratio.

Proper t ie s

PROPERTY FUNCTION

Media Location The path or URL to the media

Transparency This hint specified whether the media contains any transparency

 Alpha
Packing If the transparency hint is enabled then an optional Alpha Packing hint can be specified.

Stereo Packing The packing layout for stereo video

90/136

Platform
Override

Allows specifying an alterative MediaReference to load for that platform. If none is specified then the default one specified
here is used

PROPERTY FUNCTION

Create

A Media Reference asset can be created in the Project window by right-clicking and selecting:

Create > AVPro Video > Media Reference

Se lect

Media References display a thumbnail of the video in the Project window and they can be selected from the Browse button on the
Media Player.

91/136

Apply To Material

Sets up a material to display video from the MediaPlayer component. This material can then be used on 3D meshes or other
renderers.

Not only is the texture from the video applied, but also certain material keywords and properties are adjusted depending on the
requirements to display the video texture. For example on some platforms the video texture is flipped vertically, or in a different
colour space, so the shader is required to support these conversions. The AVPro Video shaders support these conversions and
used be used in most cases. If you choose to 'resolve' the textures in the MediaPlayer then these adjustments are already made
and so any material can be used.

Proper t ie s

PROPERTY FUNCTION

Media The MediaPlayer component to apply to the material

Default
Texture The texture to display during times when there is no video texture to display (eg during video loading)

Material The target Material to apply the video texture to

Texture
Property

The name of the Material texture to set. The default texture property depends on the render pipeline used. Standard shaders
use _MainTex. URP shaders use _Basemap. HDRP shaders use _BaseColorMap.

Offset The normalised X, Y offset to apply to the texture (if shader supports it)

Scale The normalised X, Y scale to apply to the texture (if shader supports it)

TIP

This component can be used to render a video to a material which can then be assigned to the Skybox component.



92/136

Apply To Mesh

Sets up the materials used by a Renderer (eg MeshRenderer) to display video from the MediaPlayer component.

Not only is the texture from the video applied, but also certain material keywords and properties are adjusted depending on the
requirements to display the video texture. For example on some platforms the video texture is flipped vertically, or in a different
colour space, so the shader is required to support these conversions. The AVPro Video shaders support these conversions and
used be used in most cases. If you choose to 'resolve' the textures in the MediaPlayer then these adjustments are already made
and so any material can be used.

Proper t ie s

PROPERTY FUNCTION

Media The MediaPlayer component to apply to the mesh

Default
Texture The texture to display during times when there is no video texture to display (eg during video loading)

Renderer The target Renderer (eg MeshRenderer) to apply the video texture to

All
Materials For renderers with multiple materials, either apply to all materials or a specific one

Material
Index Assign to a specific material index

Texture
Property

The name of the Material texture to set. The default texture property depends on the render pipeline used. Standard shaders
use _MainTex. URP shaders use _Basemap. HDRP shaders use _BasecolorMap.

Offset The normalised X, Y offset to apply to the texture (if shader supports it)

Scale The normalised X, Y scale to apply to the texture (if shader supports it)

93/136

Update Mult i-Pass S tereo

This component is used for stereo rendering VR devices to update AVPro Video shaders so that stereo videos have their left/right
frame rendered to the correct eye.

Usually this component isn't required as Unity internally sets up the correct shader variables, however there are some situations
where this doesn't happen and this component must be used.

Situations that require this component:

On some devices when multi-pass stereo rendering is used (e.g. on Pico G2 4K)
When OES video rendering mode (Android only) is used with multi-pass stereo rendering

NOTE

When using URP/HDRP this component must be on the same GameObject as the camera specified as the view head position.

Proper t ie s

PROPERTY FUNCTION

Camera The camera representing the viewers head position. If you are using a camera per-eye, then this should still be set to the
camera between the two eyes.



94/136

D isplay I MG UI

Displays a video on screen from the MediaPlayer component using the legacy IMGUI rendering system. IMGUI is always the
rendered last and an top of all other rendering. IMGUI is not supported in VR/AR headsets.

This is the easiest and quickest way to render video to the screen.

Proper t ie s

PROPERTY FUNCTION

Media Player The MediaPlayer component to display

Scale Mode Aspect ratio fitting mode to use

Color The color to multiply the video by. Useful for fading to black or fading to transparent

Allow Transparency Performance option (disabled is faster) to allow transparent rendering for videos with transparency

Use Depth Performance option (disabled is faster) to allow specifying the IMGUI depth to value

Depth Depth value the affects the render order when used with other IMGUI components

Full Screen Whether to display across the entire screen or allow a rectangle area to be specified

X Normalised X position for the top-left corner of the video rectangle

Y Normalised Y position for the top-left corner of the video rectangle

Width Normalised width of the video rectangle

Height Normalised height of the video rectangle

Show in Editor Display a texture in the editor so that rectangle area can be visualised

95/136

96/136

D isplay UG UI

Displays a video on screen from the MediaPlayer component using the standard Unity UI system (also called uGUI).

Proper t ie s

PROPERTY FUNCTION

Media
Player The MediaPlayer component to display

Display in
Editor Display a texture in the editor so that rectangle area can be visualised

No
Default
Display

Whether or not to display the default texture when no texture is being generated by the MediaPlayer (eg when loading)

Default
Texture The texture to display when no texture is being generated by the MediaPlayer (eg when loading)

Color The color to multiply the video by. Useful for fading to black or fading to transparent

Material
The material to use for rendering. We recommend this is left empty as generally videos require our own AVPro Video shaders
to be assigned at runtime to render the video correctly. When using custom materials, the materials shader needs to support
the AVPro Video shader keywords, or the MediaPlayer needs to be set to resolve the textures.

Raycast
Target Whether this element is hitable by the interaction raycaster

UV Rect Scaling and offset to apply to the texture

Set
Native
Size

Adjust the size of the RectTransform to match the resolution of the video texture

Scale
Mode Aspect ratio fitting mode to use

97/136

98/136

Resolve To RenderTexture

Renders a video from the MediaPlayer component to a Unity RenderTexture , optionally adjusting the colours and resolving the
texture.

Proper t ie s

PROPERTY FUNCTION

Media Player The MediaPlayer component to display

Resolve
Flags

Optional flags for how to resolve the texture. Stereo eye can be selected, mip-maps can be generated, alpha can be
unpacked.

External
Texture

Optional RenderTexture to render into. This will cause an extra texture copy to occur. This can also be set using the
ExternalTexture API property. If no external texture is set then the component generates a RenderTexture the same
dimensions as the source video and this is available via the API property TargetTexture .

Apply HSBC Whether to apply HSBC colour adjustments (Hue, Saturation, Brightness, Contast, Gamma)

 Hue Hue adjustment

 Saturation Saturation adjustment

 Brightness Brightness adjustment

 Contrast Contrast adjustment

 Gamma Gamma adjustment

Tint Tint the colour and transparency

99/136

Audio Output

This component is required when the audio output mode is set to Unity. It handles retrieving the audio data from the plugin via
OnAudioFilterRead() and playing it in Unity through an AudioSource component. The number of audio channels that are
processed will depend on the Audio settings in Unity and the number of channels in the media. For best performance and latency
the sample rate of your audio should match that of Unity.

Proper t ie s

PROPERTY FUNCTION

MediaPlayer The MediaPlayer component to retrieve audio from

AudioOutputMode

Selects the mode for how audio channels are rendered.

OneToAllChannels: will take a single audio channel and copy it to all the output audio channels. This can be useful
when used with the AudioChannelMixer to pan audio across speakers.

MultipleChannels: Allows selection of which channels to play back (default is all).

Support Positional
Audio

When the AudioSource has the Spatial Blend set then the position of the audio Transform relative to the
AudioListener transform is used to attenuate the audio based on distance. This can also apply the doppler effect
as the audio moves relative to the listener.

TIP

You can retrieve the AudioSource component that is being used by the MediaPlayer by using the AudioSource property in the MediaPlayer.
From the AudioSource you can use methods such as GetSpectrumData() to create audio visualisations.

WARNING

If you use the option to support positional audio then reading back the audio via methods such as GetSpectrumData() will not work





100/136

101/136

Audio Channel Mixer

This component allows the volume of each audio channel (up to 8) to be adjusted. Value range from 0.0 to 1.0. This component is
used together with the AudioOutput component for audio that is directed to Unity's AudioSource for playback. It must be placed
below the AudioSource and AudioOutput components.

Proper t ie s

PROPERTY FUNCTION

Channels 8 values with range 0.0 to 1.0 used to modulate the volume of that audio channel.

TIP

If you have audio where all 8 channels are the same audio then by fading down the appropriate channels you can move that sound between the
8 speakers. If you have the 8 speakers set up in a physical space in a row, then you could move the audio in real world space very easily.



102/136

103/136

P laylist Media P layer

The PlaylistMediaPlayer component extends the MediaPlayer by allowing a playlist of multiple media to be played. Optionally
visual transitions can be specified between the media items. Audio is also cross-faded when transitioning.

This component uses two MediaPlayer instances, so it is more expensive than simply using a single MediaPlayer.

NOTE

When playing very high resolution videos (eg in VR), this component may not work on mobile systems as they usually have limited hardware
video decoders and memory and this component requires two videos to be in memory at once.

Script ing



104/136

PlaylistMediaPlayer pmp;

// Setup
pmp.LoopMode = PlaylistMediaPlayer.PlaylistLoopMode.Loop;
pmp.AutoCloseVideo = true;
pmp.AutoProgress = true;
pmp.DefaultTransition = PlaylistMediaPlayer.Transition.Zoom;
pmp.DefaultTransitionDuration = 2.0f;
pmp.DefaultTransitionEasing = PlaylistMediaPlayer.Easing.Preset.InOutCubic;

// Query the playlist
int playlistSize = pmp.Playlist.Items.Count();
MediaPlaylist.MediaItem currentItem = pmp.PlaylistItem;
if (currentItem != null)
{
 Debug.Log("Current media is at " + currentItem.mediaPath.GetResolvedFullPath());
}
int playlistItemIndex = pmp.PlaylistIndex;

// Build the playlist
pmp.PlaylistItems.Clear();
MediaPlaylist.MediaItem item = new MediaPlaylist.MediaItem();
item.mediaPath = new MediaPath("myvideo.mp4", MediaPathType.RelativeToStreamingAssetsFolder);
item.progressMode = PlaylistMediaPlayer.ProgressMode.OnFinish;
item.isOverrideTransition = true;
item.overrideTransition = PlaylistMediaPlayer.Transition.Black;
item.overrideTransitionDuration = 1.0f;
item.overrideTransitionEasing = PlaylistMediaPlayer.Easing.Preset.Linear;
pmp.Playlist.Items.Add(item);

// Manipulate volume
pmp.AudioVolume = 0.5;
pmp.AudioMuted = true;

// Control playback
pmp.Pause();
pmp.Play();
if (pmp.CanJumpToItem(2))
{
 pmp.JumpToItem(2);
}
if (!pmp.NextItem())
{
 Debug.Log("Can't change item");
}
if (!pmp.PrevItem())
{
 Debug.Log("Can't change item");
}

Proper t ie s

PROPERTY FUNCTION

Player A The first MediaPlayer component

Player B The second MediaPlayer component

Auto Progress Enable the playlist to progress to the next item automatically, or wait for manual trigger via scripting

Loop Mode None: Do not loop the playlist when the end is reached.
Loop: Rewind the playlist and play again when the each is reached

105/136

Auto Close Video Closes videos that aren't playing. This will save memory but adds extra overhead

Next The transition to use when progressing to the next video

Easing The type of easing to use for the transition

Duration The duration of the transition in seconds

Pause Previous Causes the previously playing video to pause at the end of the transition which improves performance

PROPERTY FUNCTION

P laylist I tems

Each item in the playlist needs to be specified.

PROPERTY FUNCTION

File
Location Location of the file

File Path Path or URL of the file

Loop Loop the playback

Start Mode Immediate (default): start playback immediately
Manual: require API or GUI trigger to start playback

106/136

Progress
Mode

On Finish (default): the playlist will progress when the media reaches the end<br/.>Before Finish: the playlist will progress at
some interval before the end of the media is reached. This is useful when cross-fading
Manual: the playlist will only progress by the API

Progress
Time
Seconds

When Progress Mode is set to Before Finish this duration in seconds is used to specify how long before the end of the media
duration the playlist will progress to the next item.

Override
Transition Enables a custom transition to be specified for this media item

 Transition The custom transition to use for this media item

 Duration The duration in seconds for the custom transition

 Easing The easing type for the custom transition

PROPERTY FUNCTION

107/136

Subtit les UG UI

Assigns the current text cue from subtitles active on the MediaPlayer to a uGUI Text component.

An optional background Image component can be adjusted to fit the size of the text with some padding.

Proper t ie s

PROPERTY FUNCTION

Media Player The MediaPlayer component used to retrieve the subtitle text cues

Text The Text component to update with subtitle text

Background Image An optional Image component which is resized to fit the text

Background Horizontal
Padding Number of pixels to use to pad the background image horizontally

Background Vertical
Padding Number of pixels to use to pad the background image vertically

Max Characters The maximum number of characters to display. Text strings longer than this will be truncated. Useful to prevent
unexpected very long text displaying.

TIP

A version of this component for TextMeshPro could easily be made



108/136

109/136

Apply To V FX G raph

This component allows for a MediaPlayer video to be used as input to a Visual Effect Graph (requires the Visual Effect Graph
package).

Proper t ie s

PROPERTY FUNCTION

Media Player The MediaPlayer component to apply to the material

Default Texture The texture to display during times when there is no video texture to display (eg during video loading)

Visual Effect The VisualEffect component to apply the video texture to

Texture Property Name The name of the exposed texture variable to set.

Instal l ing

This is an extension as it requires the optional Visual Effect Graph package from the Package Manager, so it requires some setup
the first time you use it:

1. Add the Visual Effect Graph package to your project from the Package Manager.
2. Add the Visual Effect Graph package assembly Unity.VisualEffectGraph.Runtime to the

_AVProVideo.Extensions.VisualEffectGraph assembly definition references.
3. Add AVPRO_PACKAGE_VFXGRAPH to your player Preprocessor Defines to enable the scripts to be compiled (you can also edit

ApplyToVfxGraph.cs and comment in the #define AVPRO_PACKAGE_VFXGRAPH line at the top).

110/136

https://docs.unity3d.com/2019.3/Documentation/ScriptReference/VFX.VisualEffect.html

T imeline P layables

This component allows some basic control over the MediaPlayer component via the Timeline in the Timeline Package .

Se tup

First the Track is added to the timeline:

Next clips can be added to track by right-clicking on the track and selecting "Add Media Player Control Asset" . Clips can
overlap to allow some properties to animate. Currently only Audio Volume will animate.

Each clip can then be set up with properties for controlling the MediaPlayer.

Proper t ie s

PROPERTY FUNCTION

Media Reference The media to load

Audio Volume 0 to 1 range of audio volume

Start Time The time in seconds to start from when new media is loaded. Negative values are ignored.

Pause On End Whether to pause playback when the clips ends

Instal l ing

This is an extension as it requires the optional Timeline package from the Package Manager, so it requires some setup the first
time you use it:

1. Add the Timeline package to your project from the Package Manager.
2. Add the Timeline package assembly Unity.Timeline to the _AVProVideo.Extensions.Timeline assembly definition

references.
3. Add AVPRO_PACKAGE_TIMELINE to your player Preprocessor Defines to enable the scripts to be compiled.

111/136

Windows Desktop Platform
Plugin Specs

Compatibility
Unity 2018.x - 2022.x are supported
Supported CPU architectures are 32-bit and 64-bit x86
Windows 7 - 10 are supported, however some versions of Windows allow for more features than others

Rendering
For rendering we support Direct3D 11, Direct3D 12 (requires minimum Unity 2019.3), and also have limited support
for legacy Direct3D 9 and OpenGL.
Multi-threaded rendering is supported.

Internals
Under the hood we’re using the WinRT, Media Foundation and DirectShow API’s. WinRT is supported on Windows 10
and above, Media Foundation supported on Windows 8 and above, and DirectShow is supported from Windows 7.
The only 3rd-party libraries used in the Windows Desktop binaries are:

Hap https://github.com/Vidvox/hap
Google Snappy https://github.com/google/snappy
GDCL Mpeg-4 https://github.com/roman380/gdcl.co.uk-mpeg4
GLEW http://glew.sourceforge.net/
Facebook Audio 360 1.7.12 https://facebookincubator.github.io/facebook-360-spatial-workstation/

Supported Media
See the Supported Media section for more information.

Streaming
See the Streaming section for more information.

Platform-Specific Options
See the Platform-Specific Options section for more information.

Troubleshooting
Windows N / KN edit ions

There are some editions of Windows (N and KN) that ship with greatly reduced built-in media playback capabilities.
It seems like these editions don’t include MFPlat.DLL, but do include some basic DirectShow components. This means the
Media Foundation playback path will not work.
These editions of Windows require either a 3rd party codec installed (such as the LAV Filters for DirectShow), or the
Microsoft Media Feature Pack:

Media Feature Pack for Windows 7 SP1 https://docs.microsoft.com/en-us/troubleshoot/windows-client/shell-
experience/windows-media-feature-pack-for-windows-7
Media Feature Pack for Windows 8.1 https://www.microsoft.com/en-gb/download/details.aspx?id=40744
Media Feature Pack for Windows 10 https://www.microsoft.com/en-gb/download/details.aspx?id=48231

We found that MJPEG DirectShow codec still works on these editions without installing the Media Feature Pack, so this the
best choice for maximum compatibility

112/136

https://github.com/Vidvox/hap
https://github.com/google/snappy
https://github.com/roman380/gdcl.co.uk-mpeg4
http://glew.sourceforge.net/
https://facebookincubator.github.io/facebook-360-spatial-workstation/
https://docs.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/windows-media-feature-pack-for-windows-7
https://www.microsoft.com/en-gb/download/details.aspx?id=40744
https://www.microsoft.com/en-gb/download/details.aspx?id=48231

Android Platform
Plugin Specs

Compatibility
Unity 2018.x - 2022.x are supported (see below for build notes)
Supported CPU architectures are arm-v7a, arm64-v8a, x86 and x86-64
This plugin requires a minimum Android API level of 15 when using the MediaPlayer API, and API level 16 when using
ExoPlayer (due to its use of MediaCodec).

Rendering
For rendering OpenGL ES 2.0 and OpenGL ES 3.0 are supported, and multi-threaded rendering is supported on both.
Vulkan graphics API is not yet supported

Internals
Under the hood we’re using the Android MediaPlayer API and ExoPlayer 2.18.0 API
The only 3rd-party libraries used are:

ExoPlayer 2.19.1 https://github.com/google/ExoPlayer
Facebook Audio 360 1.7.12 https://facebookincubator.github.io/facebook-360-spatial-workstation/
Secret Rabbit Code (aka libsamplerate) 0.1.9 http://www.mega-nerd.com/SRC/license.html

Supported Media
See the Supported Media section for more information.

Streaming
See the Streaming section for more information.

Platform-Specific Options
See the Platform-Specific Options section for more information.

Build Notes
Gradle must be used as the build environment. This was introduced in Unity 2017, but different versions of Unity use different
versions of Gradle (as outlined here: https://docs.unity3d.com/Manual/android-gradle-overview.html). We have found that it is
not possible to build an application that incorporates AVPro Video using some of the older versions of Gradle found in many of
the 2017/2018 Unity releases. The following list will guide you as to what versions we have observed working, and if there are
any special requirements.

113/136

https://github.com/google/ExoPlayer
https://facebookincubator.github.io/facebook-360-spatial-workstation/
http://www.mega-nerd.com/SRC/license.html
https://docs.unity3d.com/Manual/android-gradle-overview.html

 2017.1 - requires gradle change*
 2017.2 - requires gradle change*
 2017.3 - requires gradle change*
 2017.4 to 2017.4.16 - requires gradle change*
 2017.4.17 onwards - works directly from Unity
 2018.1 - requires gradle change*
 2018.2 - requires gradle change*
 2018.3 - works directly from Unity
 2018.4 - works directly from Unity
 2019.1 - works directly from Unity
 2019.2 - works directly from Unity
 2019.3 - works directly from Unity
 2019.4 - works directly from Unity
 2020.1 - works directly from Unity
 2020.2 onwards - see notes below

old gradle needs a toolchain in older NDK (<= 16b), old NDK does not support Java 1.8 which ExoPlayer requires
compilation with.

NOTE

It has been seen that Unity can sometimes want to use a version of the build tools that are not on a given system. To overcome this you have to
tell gradle to use a version you have on your system. In Player Settings|Publisher Settings , enable the Custom Gradle Template
option. This will allow you to adjust the buildToolsVersion to one you have on your system. The template is found at:
/Assets/Plugins/Android/mainTemplate.gradle

Unity 2020.1 and above

When using Unity 2020.1 and above it has been seen that the build process overly optimises which causes issues in the ExoPlayer
library. To overcome this issue, you will need to add a custom gradle property. In Player Settings|Publisher Settings , enable
the Custom Gradle Properties Template option. The template is found at:
/Assets/Plugins/Android/gradleTemplate.properties and it should be edited adding the following line to the end of the file:
android.enableDexingArtifactTransform=false

NOTE

As of v2.0.9 the addition of this property has been automated in a post process build script.

Unity 2022.1 and above

Exoplayer requires Android SDK 33, which does not come with this version of Unity. In Player Settings|Other Settings , set
Target API Level to Android 13.0 (API level 33) and Unity should download the correct SDK when you build. The SDK will
be downloaded to Editor/Data/PlaybackEngines/AndroidPlayer/SDK/platforms/ .

If you need to target a lower version of Android, then you need to add a custom gradle property. In
Player Settings|Publisher Settings , enable the Custom Main Gradle Template and Custom Launcher Gradle Template
options. The templates are found at: /Assets/Plugins/Android/mainTemplate.gradle and
/Assets/Plugins/Android/launcherTemplate.gradle and they should be edited by adding the following lines:

minSdkVersion 22
targetSDKversion 32
compileSDKversion 33

P roguard Min ify

If you use Android minify options, AVPro Video will be stripped out and will not work. The following options need to be added to
your proguard configuration file (in Player Settings > Android > Publishing Settings > Build > Custom Proguard File)





114/136

https://developer.android.com/studio/build/shrink-code#keep-code

to prevent AVPro Video classes from being removed:

-keep class com.renderheads.AVPro.Video.** { *; }
-keep class com.google.android.exoplr2avp.** { *; }
-keep class com.twobigears.audio360.** { *; }

The above is included in /Assets/AVProVideo/Runtime/Plugins/Android/proguard-avprovideo.txt

OES Playback Path
NOTE

OES playback is not available in the trial version

For Android there is a special playback option called “Use Fast OES Path”. This option caters especially for VR where users are
trying to get the highest possible frame rate and resolution out of the device (without it overheating at the same time). The option
is available in the Platform Specific section of the MediaPlayer component:

The OES path is not enabled by default because it requires some special care to be taken and can be tricky for beginners. When
this option is enabled the Android GPU returns special OES textures (see EGL extension OES_EGL_image_external) that are
hardware specific. Unfortunately Unity isn’t able to use these textures directly, so you can’t just map them to a material or UI. To
use the texture a GLSL shader must be used. Unfortunately Unity’s GLSL support isn’t as good as its CG shader support so again
this makes things more tricky. The GLSL compiler only happens on the device (not inside Unity) so errors in the shader can be
difficult to debug.

We have included a version of the VR sphere shader that supports stereo videos as an example. Hopefully in the future we can
improve the integration of these shaders so they aren’t such special cases. This playback path is much faster though, so is
definitely worth exploring. Note that for VR stereo rendering, OES only currently supports multi-pass rendering path, and not
single-pass or single-pass instanced.

Troubleshooting
S treaming

If you want to support streaming from URL don’t forget to set the “Internet Access” option in Player Settings to “require”
If you’re streaming on Android 9 or above and connecting to an HTTP stream, then you either need to switch to HTTPS
stream, or enable cleartext support in the AndroidManifest.xml

java. lang.C lassNotFoundException / java. lang.NoSuchMethodError
Check whether you have Proguard minification enabled (see notes on Minify above) which may be over-optimising and
stripping AVPro Video files
Check the Gradle build notes above

Collect ing Logs
We often need to see the device logs to work out why something isn't working. For this the device should be connected via
USB.



115/136

If you're using Android Studio then you can click on the Logcat tab and choose No Filters in the bar on the top right. You
should see logs being produced and can copy-paste all of them into a text file.
Another useful tool on Windows is called mLogcat and is a GUI tool for monitoring and capturing logs from Android.
Alternatively the command-line tool "adb logcat" can be used from the Android SDK.

116/136

https://mlogcat.tistory.com/

macOS Platform
Plugin Specs

Compatibility
Unity 2018.x - 2022.x are supported
macOS Mojave (10.14) and later are supported
Only 64-bit (x86_64, arm64) builds are supported

Rendering
Only the Metal rendering API is supported
Multi-threaded rendering is supported

Internals
Under the hood we’re using Apple's AVFoundation API
The only 3rd-party libraries used in the macOS binaries are:

HapInAVFoundation https://github.com/Vidvox/hap-in-avfoundation

Supported Media
See the Supported Media section for more information.

Streaming
See the Streaming section for more information.

Platform-Specific Options
See the Platform-Specific Options section for more information.

Troubleshooting
Rendering

Lack of video output is usually due to the OpenGLCore renderer being selected. Make sure you're using the Metal renderer
and have enabled "Metal Editor Support" in the "Other Settings" section of the macOS Player Settings inspector.

Notarising
We notarise the plugin bundle so you shouldn't have to code-sign it prior to building your package for submission to the
App Store.

P lugin fails to load when using macOS versions older than 10.14.4

Significant portions of AVPro Video are now written using Swift. Unfortunately the Swift 5 standard libraries were not added to
macOS until 10.14.4 and when running under older version of macOS you will encounter an error similar to the following:

dyld: Library not loaded: @rpath/libswiftCore.dylib

To be able to use AVPro Video in the Unity editor with older versions of macOS please install the "Swift 5 Runtime Support for
Command Line Tools" package available from Apple's developer site here.

If you just want standalone builds to be able to run on older versions of macOS, you need to do the following:

Make sure you're using Unity 2019 or later
Make sure the iOS Build Support module is installed
In the Build Settings dialog, make sure "Create Xcode Project" is checked

117/136

https://github.com/Vidvox/hap-in-avfoundation
https://download.developer.apple.com/Developer_Tools/Swift_5_Runtime_Support_for_Command_Line_Tools/Swift_5_Runtime_Support_for_Command_Line_Tools.dmg

In the Player Settings inspector:
In the Other Settings section

Add AVPROVIDEO_SUPPORT_MACOSX_10_14_3_AND_OLDER to "Scripting Define Symbols"

Build the project
Check that "Always Embed Swift Standard Libraries" is set to "YES" in the main target's build settings.

Unfortunately we don't have a solution for projects built with older versions of Unity.

Y'CbCr Video Output Mode
Apple platforms have support for Y'CbCr textures which has lower memory overheads and is slightly more performant when
compared with standard BGRA32 textures. This option is disabled by default and can be enabled on the MediaPlayer in at
Platform Specific section:

The DisplayIMGUI and DisplayUGUI components automatically detect the use of Y'CbCr mode and switch to a suitable shader.
ApplyToMesh/ApplyToMaterial also detect this setting and try to set up the shader on the material to the correct settings,
however it requires the shader to have the correct properties. The AVPro Video shaders support this, so if you want to use this on
a mesh then make sure you’re using these shaders.

118/136

iOS / tvOS Platforms
Plugin Specs

Compatibility
Unity 2018.x - 2022.x are supported
iOS 10.0, iPadOS 13.1, tvOS 11.0 and later are supported

Rendering
Only the Metal rendering API is supported
Multi-threaded rendering is supported

Internals
Under the hood we’re using Apple's AVFoundation API

Supported Media
See the Supported Media section for more information.

Streaming
See the Streaming section for more information.

Platform-Specific Options
See the Platform-Specific Options section for more information.

Troubleshooting
My app terminates with the following error in the log:

dyld: Library not loaded: @rpath/AVProVideo.framework/AVProVideo

You need to make sure the AVProVideo.framework is set to Embed & Sign in the Frameworks, Libraries and
Embedded Content section of the General pane for the Unity-iPhone target of the generated Xcode project as shown
below:

You will also need to make sure that AVProVideo.framework is set to Do Not Embed in the Frameworks, Libraries and
Embedded Content section of the General pane for the UnityFramework target of the generated Xcode project as shown
below:

119/136

The PostProcessBuild_iOS script should do this automatically for you. It has been known to fail when:

building from the command line and not passing the -buildTarget iOS option
the path to the framework cannot be identified. This is usually due to either:

The plugin being moved from its default installed location
Whilst relocating the entire plugin folder is fine, the contents should be left in their respective locations
The plugin was installed into a project with version 1.x already present
Remove version 1.x of the plugin and then reinstall version 2.x

you are integrating Unity into a native iOS application as outlined here
add AVProVideo.framework to Frameworks, Libraries and Embedded Content section of the General
pane for your application target and make sure it is set to Embed & Sign
make sure that AVProVideo.framework is set to Do Not Embed in the Frameworks, Libraries and
Embedded Content section of the General pane for the UnityFramework target

S treaming
By default streaming requires that the HTTPS protocol is used. If you want to support streaming via HTTP you need to
enable this explicitly. Look for the "Allow downloads over HTTP" option in the "Other Settings" pane of the iOS and tvOS
player settings inspector.

Y'CbCr Video Output Mode
Apple platforms have support for Y'CbCr textures which has lower memory overheads and is slightly more performant when
compared with standard BGRA32 textures. This option is disabled by default and can be enabled on the MediaPlayer in at
Platform Specific section:

The DisplayIMGUI and DisplayUGUI components automatically detect the use of Y'CbCr mode and switch to a suitable shader.
ApplyToMesh/ApplyToMaterial also detect this setting and try to set up the shader on the material to the correct settings,
however it requires the shader to have the correct properties. The AVPro Video shaders support this, so if you want to use this on
a mesh then make sure you’re using these shaders.

120/136

https://docs.unity3d.com/Manual/UnityasaLibrary-iOS.html

Windows UWP Platform
Plugin Specs

Compatibility
Unity 2018.x - 2022.x are supported
Supported CPU architectures are x86, x86_64, ARM and ARM64

Rendering
For rendering we support Direct3D 11 and Direct3D 12 (requires minimum Unity 2019.3)
Multi-threaded rendering is supported.

Internals
Under the hood we’re using the WinRT and Media Foundation
The only 3rd-party libraries used in the UWP binaries (x86 32-bit and 64-bit only, not ARM) are:

Facebook Audio 360 1.7.12 https://facebookincubator.github.io/facebook-360-spatial-workstation/

Supported Media
See the Supported Media section for more information.

Streaming
See the Streaming section for more information.

Platform-Specific Options
See the Platform-Specific Options section for more information.

Troubleshooting
S treaming

For streaming video don’t forget to enable the “InternetClient” capability option in Unity’s Player Settings.
If you’re streaming video from a local server / LAN then you need to enable the “PrivateNetworkClientServer” option.

Performance

For best compatibility and performance add

 appCallbacks.AddCommandLineArg("-force-d3d11-no-singlethreaded");

to your MainPage.xaml.cs/cpp or MainPage.cs/cpp. You should call this before the appCallbacks.Initialize() function.

Cer tificat ion
If you use Windows App Certification Kit and you get error messages related to the Audio360.dll then you can simply delete
this DLL if you are not using the Facebook Audio 360 feature.

121/136

https://facebookincubator.github.io/facebook-360-spatial-workstation/

WebGL Platform
IMPORTANT

We do not officially support WebGL, but still include it as it may be useful for some people. We found too many issues with browser
compatibility to continue supporting it

Plugin Specs
Compatibility

We have had especially troubling times with the Safari browser as it has very strict rules about content playback, and
also mobile browsers
Web security features like CORS also make this platform difficult to support
The supported formats and features is dependant on the web browser capabilities
We have used it for playback of MP4 files, HLS and MPEG-DASH streams
The plugin supports extensions via the hls.js and dash.js libraries for browsers that do not have native support for
these streaming formats

Rendering
The plugin supports both WebGL 1.0 and 2.0, however some browsers (notably Safari) do not support WebGL 2.0

Internals
Under the hood we’re just using the <video> browser tag
No 3rd-party libraries are used, however there is support for adding specific 3rd-party libraries (hls.js and dash.js)

Supported Media
See the Supported Media section for more information.

Streaming
See the Streaming section for more information.

Platform-Specific Options
See the Platform-Specific Options section for more information.

Troubleshooting
Compatibility

The Run in Background setting in Player Settings is best enabled as browsers can sometimes stop updating the Unity
context which can lead to problems with state not being updated.

For best compatibility you can always force WebGL 1.0 instead of 2.0 (which is the default). This is done by going to
Player Settings > Other Settings > Auto Graphics API and removing WebGL 2.0. We have tested successfully with
the following browsers

macOS
Mozilla Firefox
Google Chrome

Windows



122/136

Microsoft Edge 38.14393.0.0
Mozilla Firefox 51.0
Google Chrome 56.0 - 62.0

The following browsers are not supported:

Internet Explorer 11 (any version), instead use the Microsoft Edge browser

iOS
All browsers on iOS are required to use WebKit and as a result exhibit the same behaviour as Safari, which at this time
is not supported.

123/136

Supported Media
In general the most common format that is supported are MP4 files with H.264 encoding for video and AAC encoding for audio.
This format is supported across all platforms though not necessarily all bit-rates and profiles.

AVPro Video doesn't include native support for any codecs (except for Hap and NotchLC) and relies on codecs that are natively
supported by the operating system. The tables below give a fairly accurate idea of what we expect to be supported. On Windows
3rd party codecs can be installed via DirectShow and Media Foundation and are supported.

Container Formats
Container formats are file formats that contain audio, video, text or metadata tracks. An important distinction to realise is that
these file formats and are separate for the audio and video codecs. It is not enough to say a video is in 'MP4' format as this format
contains tracks which are encoded using different codecs.

WINDOWS ANDROID MACOS IOS / IPADOS / TVOS

MP4 � � � �

MOV � . � �

MKV � � . .

WebM � � . .

AVI � . . .

MP3 � � � �

AAC � � � �

WAV � . . .

CAF . . � ?

 Requires Windows 10 for native support. Otherwise DirectShow API can be used with LAV Filters.

 Requires Windows 10 (1607 Anniversary and above) for native support. Otherwise DirectShow API can be used with LAV Filters.

Streaming Formats
AVPro Video supports several streaming protocol depending on the platform:

WINDOWS UWP ANDROID MACOS IOS / IPADOS / TVOS

HTTP Progressive

MP4 � � � � �

Adaptive

1

2

1

2

124/136

HLS (m3u8) � � � � �

MPEG-DASH (mpd) � � � . .

Microsoft Smooth Streaming (ism) � � . . .

Real-time

RTSP ~ . � . .

RTMP ~ . � . .

WINDOWS UWP ANDROID MACOS IOS / IPADOS / TVOS

 Requires Windows 10 for native support, or using DirectShow with suitable 3rd party filter (eg LAV Filters).

 Limited native support. Read Microsoft notes about support here: https://docs.microsoft.com/en-
us/windows/win32/medfound/supported-protocols. Generally only support ASF, MP3 and PCM media types, but support seems
improved from Windows 10 build 1803 onwards (as in added H.264 support), but it's not documented (parsing is handled by
mfnetsrc.dll).

 Only using DirectShow with suitable 3rd party filter (eg LAV Filters).

 Using ExoPlayer API only.

 Using ExoPlayer API, or MediaPlayer API (but not fully featured).

 Using ExoPlayer API only. Known issues surrounding address resolution.

Audio Codecs
WINDOWS ANDROID MACOS IOS / IPADOS / TVOS

AAC � � � �

MP3 � � � �

FLAC ~ � � �

AC3 � ? � �

WMA � . . .

MIDI � ? � �

Vorbis . � . .

Opus ~ � . .

ALAC (Apple Lossless) . . � �

µLAW � . � �

1 1

1 1 4

1 1

2 5

3 6

1

2

3

4

5

6

3

1

2

125/136

https://docs.microsoft.com/en-us/windows/win32/medfound/supported-protocols
https://github.com/ant-media/LibRtmp-Client-for-Android/issues/65

ADPCM � . � �

Linear PCM � � � �

WINDOWS ANDROID MACOS IOS / IPADOS / TVOS

 Requires Windows 10 for native support. Otherwise DirectShow API can be used with LAV Filters.

 Requires Windows 10 Windows 10 1607 Anniversary and above.

 Audio files only, not supported as audio tracks inside MP4 files

Video Codecs
WINDOWS ANDROID MACOS IOS / IPADOS / TVOS

HEVC / H.265 � � � �

H.264 � � � �

H.263 (DivX/XVid) � � . ?

MJPEG � . � �

WMV � . . .

VP8 � � . .

VP9 � � . .

Hap � . � .

NotchLC � . . .

ProRes 422 . . � .

ProRes 4444 . . � .

DV � � . .

Lagarith � . . .

Huffyuv � . . .

Uncompressed RGBA � ? � ?

Uncompressed YUV � ? ? ?

Uncompressed R10K . � . .

Uncompressed V210 ? � . .

1

2

3

1

5

2 4 4

2 4 4

3

3

3

3

126/136

Uncompressed 2VUY ? � . .

WINDOWS ANDROID MACOS IOS / IPADOS / TVOS

 HEVC requires Windows 10 for native support, but the codec no longer ships with Windows and requires a download from
Microsoft Store 12. Otherwise DirectShow API can be used with LAV Filters.

 Yes, only in Windows 10 and only 4:2:0. Native VP9 support only comes in Yes in Windows 10 1607 Anniversary Update and
above, but it may be available before that via Intel GPU drivers. If you use DirectShow and 3rd party filter then 4:4:4 can be
supported. Using Media Foundation no audio codecs (Vorbis or Opus) are supported and will cause the video to fail to load if
included.

 Using DirectShow API and with codec installed.

 Transparency is not supported, unless packing is used.

 H.264 on Windows only supports 4:2:0 and 8-bit (unless using DirectShow with 3rd party decoder such as LAV Filters).

Android
Android supports many media formats. For a complete list check the Android MediaPlayer documentation here:
https://developer.android.com/guide/appendix/media-formats.html and the ExoPlayer documentation here:
https://google.github.io/ExoPlayer/supported-formats.html

HEVC (H.265) support was officially added in Android 5.0 (Lollipop) but only as a software decoding implementation on older
devices.

We have found that using GearVR on Samsung Galaxy S6 and S7 that H.265 codec works best, with a resolution of 3840x1920 at
30fps, or 2048x2048 at 60fps.

A list of media-player related Android chipsets and which formats they support for hardware decoding:
http://kodi.wiki/view/Android_hardware

iOS / iPadOS / tvOS
Many media formats are supported by iOS including H.264. iOS 11 adds support for H.265 (HEVC). The iPhone 7 is the first device
with the hardware to support H.265.

iOS doesn’t support MP3 audio tracks in a video file, so best to use AAC instead.

It has proven difficult getting the true video decoding capabilities of iOS devices. Apple’s website has information, but we found it
to be slightly inaccurate (for example we can decode 4K video on iPhone5s, which apparently can only do 1080p). It seems that if
your device has a 64-bit processor then it will be able to decode 4K H.264, but older devices with 32-bit processors will not.

macOS
Many media formats are supported by macOS including H.264, HEVC, ProRes 422 and ProRes 4444.

macOS Yosemite (10.10) added support for

DV
Uncompressed R10k
Uncompressed v210
Uncompressed 2vuy

macOS High Sierra (10.13) added support for

1

2

3

4

5

127/136

https://www.microsoft.com/en-us/p/hevc-video-extension/9n4wgh0z6vhq
https://www.microsoft.com/en-us/p/hevc-video-extensions/9nmzlz57r3t7
https://developer.android.com/guide/appendix/media-formats.html
https://google.github.io/ExoPlayer/supported-formats.html
http://kodi.wiki/view/Android_hardware

HEVC (H.265)
Flac
Opus (only as a .caf file)

Windows
A full list of natively supported formats can be found here: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd757927(v=vs.85).aspx

https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

H.264 decoder supports up to profile L5.1, but Windows 10 supports above L5.1 profile: https://msdn.microsoft.com/en-
us/library/windows/desktop/dd797815(v=vs.85).aspx

H.265 decoder specs are here: https://msdn.microsoft.com/en-us/library/windows/desktop/mt218785(v=vs.85).aspx

Windows 10 adds native support for the following formats:

H.265 / HEVC
MKV
FLAC
HLS Adaptive Streaming
MPEG-DASH

Windows 10 and UWP HLS features supported: https://docs.microsoft.com/en-us/windows/uwp/audio-video-camera/hls-tag-
support

Windows 10 and UWP MPEG-DASH features supported: https://docs.microsoft.com/en-us/windows/uwp/audio-video-
camera/dash-profile-support

Windows 10 Fall Update seems to remove native H.265 / HEVC support for some users and requires them to download the free
HEVC Video Extension. Before update KB4056892 (4 Jan 2018), users also had to open a H.265 video in the Films & TV app after a
restart before AVPro Video could play H.265 videos. This update seems to fix that however.

Windows UWP
Details on media supported by this platform can be found is platform are here:

https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx

https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

WebGL
Support for WebGL platform is still varied and depends on the platform and browser support. Some formats such as AVI file
container are not supported at all. As with all other platforms, H.264 video in an MP4 container is the most widely supported
format.

Adaptive streaming (such as HLS and MPEG-DASH) is not supported natively by all browsers, but we have seen it working in the
Microsoft Edge and Safari browsers. For the best compatibility we have added the ability to include 3rd party javascript libraries
to handle these (dash.js and hls.js). See the streaming section for how to implement these.

For best compatibility make sure to force WebGL 1.0 by going to Player Settings > Other Settings > Auto Graphics API and
removing WebGL 2.0. Failure to do so can make videos on Chrome not render.

On newer versions of Safari videos are not allows to auto-play unless given permission by the user (in the preferences menu).
This doesn’t affect videos that have no audio track so this may be a workaround. More details can be found here:

128/136

https://msdn.microsoft.com/en-us/library/windows/desktop/dd757927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs
https://msdn.microsoft.com/en-us/library/windows/desktop/dd797815(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt218785(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/uwp/audio-video-camera/hls-tag-support
https://docs.microsoft.com/en-us/windows/uwp/audio-video-camera/dash-profile-support
https://www.microsoft.com/en-us/store/p/hevc-video-extension/9n4wgh0z6vhq
https://msdn.microsoft.com/library/windows/apps/ff462087(v=vs.105).aspx
https://msdn.microsoft.com/en-us/windows/uwp/audio-video-camera/supported-codecs

https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/

Some resources about the supported formats:

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats

https://en.wikipedia.org/wiki/HTML5_video#Browser_support

129/136

https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://en.wikipedia.org/wiki/HTML5_video#Browser_support

Encoding Notes
Correct video encoding is important to get the best results for different use cases. Mostly videos are encoded for the typical case:
forward playback with support for slow random seeking. Alternatively you may want to be able to seek through the video quickly,
so you would need to encode with different parameters for that use case.

There is a wide range video encoding software but we shall focus on the command-line tool FFMPEG as it is very mature and
flexible, however it should be possible to apply the same concepts with others encoders.

Resources
FFMPEG

H.264 Codec
H.265 / HEVC Codec
VP9 Codec
Filters
Colorspaces

Headjack Encoding Blog

FMPEG Basics
Below is a basic FFMPEG command. This will convert input.mov to output.mp4. The video track will be compressed using the
H.264 video codec (libx264 is the name of this encoder), with frames encoded in the 4:2:0 format which is the most common.
Since no other options are specified it will use some default settings for the encoder and based on the input video properties. Any
audio in the source video will be compressed with the default audio compression for MP4 which is AAC.

ffmpeg -i input.mov -c:v libx264 -pix_fmt yuv420p -y output.mp4

You can add many parameters to control how videos are encoded. These paramters will limit the output video to 4 seconds,
remove the audio track, and change the frame rate to 30 FPS, the size to 1280x702 and with a quality factor of 14 which is quite
high quality and will result in a slightly larger file.

ffmpeg -i input.mov -c:v libx264 -pix_fmt yuv420p -t 4 -an -r 30 -s 1280x720 -crf 14 -y output.mp4

Windows Batch Files
You can create .bat files with FFMPEG commands so that videos can be processed by dragging the files into the batch files.

Using %1 for the input and output file names, this will become the path of the source file:

ffmpeg -i %1 -c:v libx264 -pix_fmt yuv420p -y %1-output.mp4

Fast Seeking
For a use case of fast seeking/scrubbing through the video, it's important to simplify the encoding so that it favours fast decoding
over small file size. This is usually done by increasing the number of key frames and disabling some of the more complex
encoding settings (eg B-frames).

Convert a video to H.264 with only key-frames and tuned to decode quickly at the expense of file size:

ffmpeg -i input.mov -pix_fmt yuv420p -c:v libx264 -crf 18 -tune fastdecode -x264-params "keyint=1" output.mp4

Convert a video to HEVC with only key-frames and tuned to decode quickly at the expense of file size:

130/136

https://www.ffmpeg.org
https://trac.ffmpeg.org/wiki/Encode/H.264
https://trac.ffmpeg.org/wiki/Encode/H.265
https://trac.ffmpeg.org/wiki/Encode/VP9
https://ffmpeg.org/ffmpeg-filters.html
https://trac.ffmpeg.org/wiki/colorspace
https://headjack.io/blog/unity-video-formats-and-codecs-player-sdks-and-spatial-audio/

ffmpeg -i input.mov -pix_fmt yuv420p -c:v libx265 -crf 18 -tune fastdecode -g 1 output.mp4

See the section about seeking for further information.

Transparency Packing
Convert a video with alpha channel (eg using ProRes4444) to a left-right alpha packing video:

ffmpeg -i input.mov -c:v libx264 -pix_fmt yuv420p -vf "split [a], pad=iw*2:ih [b], [a] alphaextract, [b]
overlay=w" -y output.mp4

Convert a video with alpha channel (eg using ProRes4444) to a top-bottom alpha packing video:

ffmpeg -i input.mov -c:v libx264 -pix_fmt yuv420p -vf "split [a], pad=iw:ih*2 [b], [a] alphaextract, [b]
overlay=0:h" -y output.mp4

Stereo Packing
Convert two videos, each representing one eye into a packed left-right stereo video (without stereo metadata):

ffmpeg -i left.mp4 -c:v libx264 -pix_fmt yuv420p -vf "[in] pad=2*iw:ih [left]; movie=right.mp4 [right];[left]
[right] overlay=main_w/2:0 [out]" output.mp4

H.265 / HEVC
Convert a video to HEVC (note that the -tag:v hvc1 is specified here for compatiblity with Apple platforms):

ffmpeg -i input.mov -pix_fmt yuv420p -crf 18 -vcodec libx265 -tag:v hvc1 -movflags faststart output.mp4

Frame Rate
The frame rate of your video should ideal match the refresh rate of your target display device. If that's not possible then it shoudl
be a multiple of the display device rate. For example if you intend to display on a 60hz screen, then ideally your video frame rate
should be 60 or 30. This will result in the smoothest playback.

VR / 360 / High Resolution Video
When encoding high resolution video (for example for 360 VR) you should usually consult the developer documentation for the
target platform / device. Usually though a codec like VP9 or HEVC (H.265) is required instead of the standard H.264 as HEVC
supports higher resolutions.

With FFMPEG to use HEVC codec:

ffmpeg -i input.mov -pix_fmt yuv420p -crf 18 -vcodec libx265 -tag:v hvc1 -movflags faststart output.mp4

or the VP9 codec:

ffmpeg -i input.mov -pix_fmt yuv420p -crf 18 -libvpx-vp9 -movflags faststart output.mp4

Colour-space Profiles
When encoding videos there are different standard for colour encoding. They can broken up into 4 main properties with these
common values:

Range
131/136

-color_range tv (limited range)
-color_range pc (full range)

Colour transfer
-color_trc bt709

-color_trc bt2020-10 (for 10-bit)
-color_trc smpte2084 (PQ)
-color_trc arib-std-b67 (HLG)

Colorspace
-colorspace bt709

-colorspace bt2020nc

Colour primaries
-color_primaries bt709

-color_primaries bt2020

The most common encoding for videos is to use the Rec709 standard. Convert a video to 10-Bit HEVC using Rec709 standard
with full range:

ffmpeg -i input.mov -pix_fmt yuv420p10le -color_primaries bt709 -color_trc bt709 -colorspace bt709 -
color_range pc -crf 18 -vcodec libx265 -tag:v hvc1 -movflags +write_colr -movflags faststart output.mp4

10-Bit Videos
Convert a video to 10-Bit HEVC using Rec709 standard with full range:

ffmpeg -i input.mov -pix_fmt yuv420p10le -color_primaries 1 -color_trc 1 -colorspace 1 -color_range 2 -crf 18
-vcodec libx265 -tag:v hvc1 -movflags +write_colr -movflags +faststart output.mp4

Quality and File Size - Constant Rate Factor
The constant rate factor will try to give you a target quality without caring about the final file size or bit rate. You can control
quality using the -crf option where the lower the number [1..51] the higher the quality is. Also the -preset can be set to the
slowest preset you can handle to get the best quality

Convert a video to HEVC with high quality and long encoding time:

ffmpeg -i input.mov -pix_fmt yuv420p -crf 8 -vcodec libx265 -tag:v hvc1 -preset slower output.mp4

Convert a video to H.264 with normal quality and short encoding time:

ffmpeg -i input.mov -pix_fmt yuv420p -crf 28 -vcodec libx264 -preset ultrafast output.mp4

Quality and File Size - Variable Bit Rates
If you have a target file size, then you can use 2-pass encoding to achieve the best quality for that size. First you need to caculate
the maximum bit rate for your target file size:

BitRateInMbps = (TargetFileSizeInMegaBytes x 8) / VideoDurationInSeconds

You can then pass this bit rate into the -b:v parameter:

ffmpeg -i input.mov -c:v libx264 -pix_fmt yuv420p -b:v 3.5M -pass 1 -an -f mp4 NUL
ffmpeg -i input.mov -c:v libx264 -pix_fmt yuv420p -b:v 3.5M -pass 2 -c:a aac output.mp4

132/136

Progressive MP4 Streaming
A video file can be prepared for streaming by applying the 'fast start' option to an existing video:

ffmpeg -i input.mp4 -acodec copy -vcodec copy -movflags faststart output.mp4

Hap Codec
FFMPEG doesn't support all the Hap format variants, but you can encode these types:

Convert video to basic Hap:

ffmpeg -i input.mov -vcodec hap -format hap output.mov

Convert video to basic Hap with alpha channel:

ffmpeg -i input.mov -vcodec hap -format hap_alpha output.mov

Convert video to basic HapQ for higher quality:

ffmpeg -i input.mov -vcodec hap -format hap_q output.mov

Convert video to basic HapQ for higher quality with 8 chunks for better multi-threaded decoding, and force using the snappy
compressor for smaller file size:

ffmpeg -i input.mov -vcodec hap -format hap_q -chunks 8 -compressor snappy output.mov

For encoding other newer Hap formats you can find the plugins online including Jokyo, Original Quicktime plugin, Original AV
Foundation tool.

Oculus Quest / Go
The Oculus Quest / Go have special encoding requirements which are detailed in this Blog Post.

Facebook Audio 360
Typically the Facebook Audio 360 Sparial Workstation would be used to create compatible MKV files with Opus audio. But in
some cases ambisonic encoded videos can be converted using FFMPEG.

Convert a video with ambisonic audio (1st, 2nd or 3rd order) into a MKV file suitable for Facebook Audio 360 decoding and
copying the existing video tracks:

ffmpeg -y -i input.mov -c:v copy -sample_fmt s16 -acodec libopus -mapping_family 255 output.mkv

Removing Audio
If audio is not needed, it's best to strip it out using the -an option:

ffmpeg -i input.mp4 -an -vcodec copy output.mp4

Remove Rotation
Rotation metadata can be removed:

ffmpeg -i input.mp4 -metadata:s:v:0 rotate=0 output.mp4

133/136

https://jokyohapencoder.com
https://github.com/Vidvox/hap-qt-codec/releases
https://github.com/Vidvox/hap-in-avfoundation/releases
https://creator.oculus.com/blog/encoding-high-resolution-360-and-180-video-for-oculus-go/
https://facebookincubator.github.io/facebook-360-spatial-workstation/

Known Issues
AVPro Video is built on top of operating system APIs, and sometimes these APIs have bugs that we cannot easily resolve.

Most of these are edge cases, but here is a list of known issues that we're unlikely to be able to fix:

1 . I nterlaced video doesn't play back smoothly on Windows using Media Foundation / WinR T AP I s

Interlaced videos play back with some stuttering. The workaround is to use progressive video only, or use DirectShow API for
interlaced videos.

2. H .264 on Windows only suppor ts 4:2:0 8-bit using Media Foundation / WinR T AP I s

Videos with other chroma sub-sampling profiles (eg 4:2:2 or 4:4:4) or 10-bit formats can cause the app/editor to freeze. The
workaround is to use 4:2:0 8-bit videos only for H.264 on Windows, or use DirectShow API with LAV Filters installed.

3. V ideos with a very large t imescale (TB N) can play back skipping frames when using D irectShow AP I

DirectShow doesn't seem to be able to handle really massive timescale values. This issue is mostly caused by dubious encoding
sources. The workaround is to make sure your video is encoded with sensible timescale values. You can also re-encode the video
to correct the timescale using FFMPEG command:
ffmpeg -i input.mp4 -an -pix_fmt yuv420p -crf 18 -video_track_timescale 90000 -movflags faststart -y output.mp4

4. Windows Media Foundation sometimes fails to stream mult iple instances of the same MP 4 UR L concurrently

If you have 3 or more MP4 streams (remote) to the same file, some of the streams will not being playback. The workaround is to
switch to the WinRT API. Issue

5. Windows Media Foundation sometimes stops buffering H LS when playback rate is above 1 .0

Issue

134/136

https://github.com/RenderHeads/UnityPlugin-AVProVideo/issues/1137
https://github.com/RenderHeads/UnityPlugin-AVProVideo/issues/1058

Frequently Asked Questions
Top
1 . Why doesn't my video play?

Typically when media fails to load you will see this generic error message:

Loading failed. File not found, codec not supported, video resolution too high or insufficient system resources

This is a complicated question to answer, as there are many possible reasons why the media can't be played, and it's not always
easy to determine the reason - hence the generic error message.

In order for media to play, let's examine all of the conditions that need be true:

1. The file must exist at the specified location
Check that the file is at the location specified.
The file cannot be in the /Assets folder unless it is within the /StreamingAssets subfolder.

2. The Unity application must have permission to access this file
For streaming:

Platforms often prefer a HTTPS URL and will fail to load a HTTP URL unless forced, see platform notes (Android,
iOS) for details.
On Android make sure you have the Internet Access option in Player Settings set to require .
On UWP make sure to enable the InternetClient capability option in Player Settings
On WebGL it's best to use one of the javascript libraries (eg hls.js) for adaptive streaming
On WebGL make sure there is not a CORS permission issue
For MP4 files it's best if they're encoded with 'fast start' so they begin streaming immediately

For local files:
On Android make sure Write Permissions in Player Settings is set to External (SDCard)
On Android 11 there are changes to folder permissions - see Android article here
On Android if the file is inside the application JAR (from StreamingAssets) and is very large, it may fail to
decode because the JAR must be opened and uses a lot of memory. For large files we recommend instead
streaming from a URL, or downloading it to the persistent storage path and playing from there.

3. Unity player must be set correctly
The correct graphics API must be used, check the platform requirements. For example on Vulkan is not a supported
graphics API on Android.

4. The system must have sufficient resources to open and decode the media
This is particularly true for mobile / tablet / portable VR platforms which have more resource constraints than
desktops
Memory and video decode resources are typical bottlenecks. Say your mobile platform supports up to 4K30 video,
then you probably need to completely unload the video before playing the next one, as there are limited video decode
resources.

5. The container format (mp4 / mov / mkv / m3u8 etc) and audio-video codecs (h.264 / hevc / aac etc) must be
supported

See the section on Supported Media for different platforms

135/136

https://www.renderheads.com/content/docs/AVProVideo/articles/platform-android.html#streaming-1
https://www.renderheads.com/content/docs/AVProVideo/articles/platform-ios.html#streaming-1
https://developer.android.com/about/versions/11/privacy/storage

6. The media codec specs (eg high resolution / frame-rate, 10-bit, 4:4:4, profile/level) must be supported by the
hardware

See the section on Supported Media for different platforms
If your video is failing, check whether another simpler video plays (perhaps one of our included sample videos), it's
possible that your system doesn't support a feature of the media
If you're playing high resolution video, check the notes about this

7. The MediaPlayer component must be configured correctly
If you're playing MKV files with 360 audio, then the Facebook 360 Audio options need to be set correctly
You may need to select a specific API for video playback in the Platform Specific section depending on the media
features

NOTE

Just because it plays in the editor doesn't mean it will play when you deploy to another platform. The editor is running on Windows / macOS
which has completely different hardware capabilities to mobile devices.

2. How do I troubleshoot my issue?

Whether your video is failing to load, or there is a problem with the display, there are several common steps to help diagnose the
cause of the issue:

1. Check the log file - the log file may contain useful error messages which will explain why the media failed to play. See
Android notes on how to get the log file.

2. Check the conditions carefully in FAQ question 1.

3. Try loading one of our simple sample videos instead - eg BigBuckBunny-360p30-H264.mp4 from
StreamingAssets/AVProVideoSamples or streaming from our test URL: https://rh-testmedia.s3-eu-west-
1.amazonaws.com/Samples/BigBuckBunny-360p30-H264.mp4



136/136

https://www.renderheads.com/content/docs/AVProVideo/articles/platform-android.html#collecting-logs
https://rh-testmedia.s3-eu-west-1.amazonaws.com/Samples/BigBuckBunny-360p30-H264.mp4

	Cover Page
	Table of Contents
	Articles
	About
	Introduction
	What's New
	Features
	Requirements
	Download
	Asset Files

	Getting Started
	Installation
	Upgrading Projects
	Quick Start
	Loading Media
	Demos
	Shaders

	Core Features
	Events
	Streaming
	AR/VR/XR
	High Res
	Stereo Video
	Transparency
	Subtitles
	Video Capture
	Content Protection
	Seeking & Playback Rate

	Ultra Features
	360 Audio
	10-bit Video
	Hap Codec
	NotchLC Codec
	Content Protection
	Caching
	Smooth Video

	Components
	Media Player
	Media Reference
	Apply To Material
	Apply To Mesh
	Update Multipass Stereo
	Display IMGUI
	Display UGUI
	Resolve To RenderTexture
	Audio Output
	Audio Channel Mixer
	Playlist Media Player
	Subtitles UGUI

	Extension Components
	Apply To VFX Graph
	Timeline Playables

	Platform Notes
	Windows
	Android
	macOS
	iOS/iPadOS/tvOS
	UWP
	WebGL

	Media
	Supported Media
	Encoding Notes

	Known Issues
	FAQ

